Spaces:
Sleeping
Sleeping
File size: 7,219 Bytes
b2b40b3 2360578 9b424cf 2360578 4980e3a 971f1fd 2360578 7f53bff 2360578 c11d9db 3d2c1c1 2360578 aec1ff0 2360578 e28f513 fb6ba2e e28f513 2360578 e28f513 fb6ba2e 2360578 e28f513 aec1ff0 971f1fd e28f513 971f1fd e28f513 2360578 217ee9a bbecffd df69f7c dde1006 971f1fd df69f7c de5cc61 bbecffd dde1006 df69f7c 2360578 aec1ff0 e28f513 2360578 e28f513 2360578 e28f513 2360578 e28f513 b259230 e28f513 bc3efba 002242b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import time
import transformers
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from io import BytesIO
from urllib.request import urlopen
import librosa
import os, json
from sys import argv
from vllm import LLM, SamplingParams
import vllm
import re
def load_model_processor(model_path):
processor = AutoProcessor.from_pretrained(model_path)
llm = LLM(
model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
enforce_eager=True, device = "cuda",
limit_mm_per_prompt={"audio": 5},
)
return llm, processor
model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
model1, processor1 = load_model_processor(model_path1)
def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.7,repetition_penalty=1.1, top_p = 0.5,max_new_tokens = 2048):
turn = conversation[-1]
if turn["role"] == "user":
for content in turn['content']:
if content["type"] == "text":
if contains_chinese(content["text"]):
return "ERROR! This demo does not support Chinese!"
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
if ele['audio_url'] != None:
audios.append(librosa.load(
ele['audio_url'],
sr=processor.feature_extractor.sampling_rate)[0]
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
stop_token_ids=[],
)
input = {
'prompt': text,
'multi_modal_data': {
'audio': [(audio, 16000) for audio in audios]
}
}
output = model.generate([input], sampling_params=sampling_params)[0]
response = output.outputs[0].text
if contains_chinese(response):
return "ERROR! This demo does not support Chinese! Try a different instruction/prompt!"
return response
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def contains_chinese(text):
# Regular expression for Chinese characters
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
return bool(chinese_char_pattern.search(text))
def add_message(history, message):
paths = []
for turn in history:
if turn['role'] == "user" and type(turn['content']) != str:
paths.append(turn['content'][0])
for x in message["files"]:
if x not in paths:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
return history, gr.MultimodalTextbox(value=None, interactive=False)
def format_user_messgae(message):
if type(message['content']) == str:
return {"role": "user", "content": [{"type": "text", "text": message['content']}]}
else:
return {"role": "user", "content": [{"type": "audio", "audio_url": message['content'][0]}]}
def history_to_conversation(history):
conversation = []
audio_paths = []
for turn in history:
if turn['role'] == "user":
if not turn['content']:
continue
turn = format_user_messgae(turn)
if turn['content'][0]['type'] == 'audio':
if turn['content'][0]['audio_url'] in audio_paths:
continue
else:
audio_paths.append(turn['content'][0]['audio_url'])
if len(conversation) > 0 and conversation[-1]["role"] == "user":
conversation[-1]['content'].append(turn['content'][0])
else:
conversation.append(turn)
else:
conversation.append(turn)
print(json.dumps(conversation, indent=4, ensure_ascii=False))
return conversation
def bot(history: list, temperature = 0.7,repetition_penalty=1.1, top_p = 0.5,
max_new_tokens = 2048):
conversation = history_to_conversation(history)
response = response_to_audio_conv(conversation, model=model1, processor=processor1, temperature = temperature,repetition_penalty=repetition_penalty, top_p = top_p, max_new_tokens = max_new_tokens)
# response = "Nice to meet you!"
print("Bot:",response)
history.append({"role": "assistant", "content": ""})
for character in response:
history[-1]["content"] += character
time.sleep(0.01)
yield history
with gr.Blocks() as demo:
gr.HTML("""<p align="center"><img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/images/seallm-audio-logo.png" style="height: 80px"/><p>""")
gr.HTML("""<h1 align="center" id="space-title">SeaLLMs-Audio-Demo</h1>""")
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
This WebUI is based on <a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B">SeaLLMs-Audio-7B</a>, developed by Alibaba DAMO Academy.<br>
You can interact with the chatbot in <b>English, Indonesian, Thai, or Vietnamese</b>.<br>
For the input, you can provide <b>audio and/or text</b>.
</div>"""
)
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
<a href="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/">[Website]</a>
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B">[Model🤗]</a>
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio">[Github]</a>
</div>"""
)
# gr.Markdown(insturctions)
# with gr.Row():
# with gr.Column():
# temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature")
# with gr.Column():
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
# with gr.Column():
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
chatbot = gr.Chatbot(elem_id="chatbot", bubble_full_width=False, type="messages")
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="single",
file_types=['.wav'],
placeholder="Enter message (optional) ...",
show_label=False,
sources=["microphone", "upload"],
)
chat_msg = chat_input.submit(
add_message, [chatbot, chat_input], [chatbot, chat_input]
)
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
# bot_msg = chat_msg.then(bot, [chatbot, temperature, repetition_penalty, top_p], chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
# chatbot.like(print_like_dislike, None, None, like_user_message=True)
clear_button = gr.ClearButton([chatbot, chat_input])
# demo.launch(share=True)
demo.queue(default_concurrency_limit=10).launch(share=True)
|