File size: 665 Bytes
0b6b858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import pipeline
from huggingface_hub import login

login("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", add_to_git_credential=True)


pipe = pipeline(model="SebLih/whisper-SV")  # change to "your-username/the-name-you-picked"

def transcribe(audio):
    text = pipe(audio)["text"]
    print("Transcribed text:")
    print(text)
    return text

iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title="Whisper Small Swedish",
    description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)

iface.launch(share=True)