import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch import soundfile as sf from xcodec2.modeling_xcodec2 import XCodec2Model import torchaudio import gradio as gr import tempfile import os import numpy as np llasa_1b ='SebastianBodza/Kartoffel-1B-v0.3' tokenizer = AutoTokenizer.from_pretrained(llasa_1b, token=os.getenv("HF_TOKEN")) model = AutoModelForCausalLM.from_pretrained( llasa_1b, trust_remote_code=True, device_map="cuda", token=os.getenv("HF_TOKEN") ) model_path = "srinivasbilla/xcodec2" Codec_model = XCodec2Model.from_pretrained(model_path) Codec_model.eval().cuda() whisper_turbo_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device="cuda", ) SPEAKERS = { "Male 1": { "path": "speakers/deep_speaker.mp3", "transcript": "Das große Tor von Minas Tirith brach erst, nachdem er die Ramme eingesetzt hatte.", "description": "Eine tiefe epische Männerstimme.", }, "Male 2": { "path": "speakers/male_austrian_accent.mp3", "transcript": "Man kann sich auch leichter vorstellen, wie schwierig es ist, dass man Entscheidungen trifft, die allen passen.", "description": "Eine männliche Stimme mit österreicherischem Akzent.", }, "Male 3": { "path": "speakers/male_energic.mp3", "transcript": "Wo keine Infrastruktur, da auch keine Ansiedlung von IT-Unternehmen und deren Beschäftigten bzw. dem geeigneten Fachkräftenachwuchs. Kann man diese Rechnung so einfach aufmachen, wie es es tatsächlich um deren regionale Verteilung beschäftigt?", "description": "Eine männliche energische Stimme", }, "Male 4": { "path": "speakers/schneller_speaker.mp3", "transcript": "Genau, wenn wir alle Dächer voll machen, also alle Dächer von Einfamilienhäusern, alleine mit den Einfamilienhäusern können wir 20 Prozent des heutigen Strombedarfs decken.", "description": "Eine männliche Spreche mit schnellerem Tempo.", }, "Female 1": { "path": "speakers/female_standard.mp3", "transcript": "Es wird ein Beispiel für ein barrierearmes Layout gegeben, sowie Tipps und ein Verweis auf eine Checkliste, die hilft, Barrierearmut in den eigenen Materialien zu prüfen bzw. umzusetzen.", "description": "Eine weibliche Stimme.", }, "Female 2": { "path": "speakers/female_energic.mp3", "transcript": "Dunkel flog weiter durch das Wald. Er sah die Sterne am Phaneten an sich vorbeiziehen und fühlte sich frei und glücklich.", "description": "Eine weibliche Erzähler-Stimme.", }, "Female 3": { "path": "speakers/austrian_accent.mp3", "transcript": "Die politische Europäische Union war geboren, verbrieft im Vertrag von Maastricht. Ab diesem Zeitpunkt bestehen zwei Vertragswerke.", "description": "Eine weibliche Stimme mit österreicherischem Akzent.", }, "Special 1": { "path": "speakers/low_audio.mp3", "transcript": "Druckplatten und Lasersensoren, um sicherzugehen, dass er auch da drin ist und", "description": "Eine männliche Stimme mit schlechter Audioqualität als Effekt.", }, } def preview_speaker(display_name): """Returns the audio and transcript for preview""" speaker_name = speaker_display_dict[display_name] if speaker_name in SPEAKERS: waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"]) return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"] return None, "" def normalize_audio(waveform: torch.Tensor, target_db: float = -20) -> torch.Tensor: """ Normalize audio volume to target dB and limit gain range. Args: waveform (torch.Tensor): Input audio waveform target_db (float): Target dB level (default: -20) Returns: torch.Tensor: Normalized audio waveform """ # Calculate current dB eps = 1e-10 current_db = 20 * torch.log10(torch.max(torch.abs(waveform)) + eps) # Calculate required gain gain_db = target_db - current_db # Limit gain to -3 to 3 dB range gain_db = torch.clamp(gain_db, min=-3, max=3) # Apply gain gain_factor = 10 ** (gain_db / 20) normalized = waveform * gain_factor # Final peak normalization max_amplitude = torch.max(torch.abs(normalized)) if max_amplitude > 0: normalized = normalized / max_amplitude return normalized def ids_to_speech_tokens(speech_ids): speech_tokens_str = [] for speech_id in speech_ids: speech_tokens_str.append(f"<|s_{speech_id}|>") return speech_tokens_str def extract_speech_ids(speech_tokens_str): speech_ids = [] for token_str in speech_tokens_str: if token_str.startswith("<|s_") and token_str.endswith("|>"): num_str = token_str[4:-2] num = int(num_str) speech_ids.append(num) else: print(f"Unexpected token: {token_str}") return speech_ids @spaces.GPU(duration=30) @torch.inference_mode() def infer_with_speaker( display_name, target_text, temp, top_p_val, min_new_tokens, do_sample, progress=gr.Progress(), ): """Modified infer function that uses predefined speaker""" speaker_name = speaker_display_dict[display_name] # Get actual speaker name if speaker_name not in SPEAKERS: return None, "Invalid speaker selected" return infer( SPEAKERS[speaker_name]["path"], target_text, temp, top_p_val, min_new_tokens, do_sample, SPEAKERS[speaker_name]["transcript"], # Pass the predefined transcript progress, ) @spaces.GPU(duration=30) @torch.inference_mode() def gradio_infer(*args, **kwargs): return infer(*args, **kwargs) def infer( sample_audio_path, target_text, temp, top_p_val, min_new_tokens, do_sample, transcribed_text=None, progress=gr.Progress(), ): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: progress(0, "Loading and trimming audio...") waveform, sample_rate = torchaudio.load(sample_audio_path) waveform = normalize_audio(waveform) if len(waveform[0]) / sample_rate > 15: gr.Warning("Trimming audio to first 15secs.") waveform = waveform[:, : sample_rate * 15] waveform = torch.nn.functional.pad( waveform, (0, int(sample_rate * 0.5)), "constant", 0 ) # Check if the audio is stereo (i.e., has more than one channel) if waveform.size(0) > 1: # Convert stereo to mono by averaging the channels waveform_mono = torch.mean(waveform, dim=0, keepdim=True) else: # If already mono, just use the original waveform waveform_mono = waveform prompt_wav = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000 )(waveform_mono) if transcribed_text is None: progress(0.3, "Transcribing audio...") prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())["text"].strip() else: prompt_text = transcribed_text progress(0.5, "Transcribed! Generating speech...") if len(target_text) == 0: return None elif len(target_text) > 500: gr.Warning("Text is too long. Please keep it under 300 characters.") target_text = target_text[:500] input_text = prompt_text + " " + target_text # TTS start! with torch.no_grad(): # Encode the prompt wav vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav) vq_code_prompt = vq_code_prompt[0, 0, :] # Convert int 12345 to token <|s_12345|> speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt) formatted_text = ( f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>" ) # Tokenize the text and the speech prefix chat = [ { "role": "user", "content": "Convert the text to speech:" + formatted_text, }, { "role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + "".join(speech_ids_prefix), }, ] input_ids = tokenizer.apply_chat_template( chat, tokenize=True, return_tensors="pt", continue_final_message=True, ) input_ids = input_ids.to("cuda") speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>") # Generate the speech autoregressively outputs = model.generate( input_ids, max_length=2048, # We trained our model with a max length of 2048 eos_token_id=speech_end_id, do_sample=do_sample, top_p=top_p_val, temperature=temp, min_new_tokens=min_new_tokens, ) # Extract the speech tokens generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix) : -1] speech_tokens = tokenizer.batch_decode( generated_ids, skip_special_tokens=False ) raw_output = " ".join(speech_tokens) # Capture raw tokens speech_tokens = tokenizer.batch_decode( generated_ids, skip_special_tokens=True ) # Convert token <|s_23456|> to int 23456 speech_tokens = extract_speech_ids(speech_tokens) speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0) # Decode the speech tokens to speech waveform gen_wav = Codec_model.decode_code(speech_tokens) # if only need the generated part gen_wav = gen_wav[:, :, prompt_wav.shape[1] :] progress(1, "Synthesized!") return ( 16000, gen_wav[0, 0, :].cpu().numpy(), ), raw_output # Return both audio and raw tokens with gr.Blocks() as app_tts: gr.Markdown("# Zero Shot Voice Clone TTS") with gr.Accordion("Model Settings", open=False): temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature", info="Higher values = more random/creative output", ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=1.0, step=0.1, label="Top P", info="Nucleus sampling threshold", ) min_new_tokens = gr.Slider( minimum=0, maximum=128, value=3, step=1, label="Min Length", info="If the model just produces a click you can force it to create longer generations.", ) do_sample = gr.Checkbox( label="Sample", value=True, info="Sample from the distribution" ) ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") gen_text_input = gr.Textbox(label="Text to Generate", lines=10) generate_btn = gr.Button("Synthesize", variant="primary") audio_output = gr.Audio(label="Synthesized Audio") raw_output_display = gr.Textbox( label="Raw Model Output", interactive=False ) # Add textbox generate_btn.click( lambda *args: gradio_infer(*args, transcribed_text=None), inputs=[ ref_audio_input, gen_text_input, temperature, top_p, min_new_tokens, do_sample, ], outputs=[audio_output, raw_output_display], # Include both outputs ) with gr.Blocks() as app_speaker: gr.Markdown("# Predefined Speaker TTS") with gr.Accordion("Model Settings", open=False): temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Higher values = more random/creative output", ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=1.0, step=0.1, label="Top P", info="Nucleus sampling threshold", ) min_new_tokens = gr.Slider( minimum=0, maximum=128, value=3, step=1, label="Min Length", info="If the model just produces a click you can force it to create longer generations.", ) do_sample = gr.Checkbox( label="Sample", value=True, info="Sample from the distribution" ) with gr.Row(): speaker_display_dict = { f"{name} - {SPEAKERS[name]['description']}": name for name in SPEAKERS.keys() } speaker_dropdown = gr.Dropdown( choices=list(speaker_display_dict.keys()), label="Select Speaker", value=list(speaker_display_dict.keys())[0], ) preview_btn = gr.Button("Preview Voice") with gr.Row(): preview_audio = gr.Audio(label="Preview") preview_text = gr.Textbox(label="Original Transcript", interactive=False) gen_text_input = gr.Textbox(label="Text to Generate", lines=10) generate_btn = gr.Button("Synthesize", variant="primary") audio_output = gr.Audio(label="Synthesized Audio") raw_output_display = gr.Textbox(label="Raw Model Output", interactive=False) # Connect the preview button preview_btn.click( preview_speaker, inputs=[speaker_dropdown], outputs=[preview_audio, preview_text], ) # Connect the generate button generate_btn.click( infer_with_speaker, inputs=[ speaker_dropdown, gen_text_input, temperature, top_p, min_new_tokens, do_sample, ], outputs=[audio_output, raw_output_display], ) with gr.Blocks() as app_credits: gr.Markdown(""" # Credits * [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training) * [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) """) with gr.Blocks() as app: gr.Markdown( """ # Kartoffel-1B-v0.3 beta - llasa 1b TTS Currently the model is trained on a bigger dataset, this are the preliminary results after ~15% training duration. This is a local web UI for my finetune of the llasa 1b SOTA(imo) Zero Shot Voice Cloning and TTS model. The checkpoints support German. If the audio is of low quality, the model may struggle to generate speech. Turn the **temperature** up to get more coherent results. If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. """ ) gr.TabbedInterface([app_speaker, app_tts], ["Speaker", "Clone"]) app.launch(ssr_mode=False)