Spaces:
Runtime error
Runtime error
Commit
·
afa19d2
1
Parent(s):
3f4a85c
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,80 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import hopsworks
|
|
|
4 |
import os
|
5 |
|
6 |
-
# Get data from online source
|
7 |
-
hopsworks_api_key = os.environ['HOPSWORKS_API_KEY']
|
8 |
-
project = hopsworks.login(api_key_value = hopsworks_api_key)
|
9 |
-
dataset_api = project.get_dataset_api()
|
10 |
-
today_path = dataset_api.download("Resources/today_timetable_prediction/today_timetable_prediction.csv", overwrite=True)
|
11 |
-
tomorrow_path = dataset_api.download("Resources/tomorrow_timetable_prediction/tomorrow_timetable_prediction.csv", overwrite=True)
|
12 |
-
|
13 |
-
|
14 |
def download_data(path):
|
15 |
os.path.abspath(path)
|
16 |
df = pd.read_csv(path)
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
headers=["FlightNumber", "Destination", "ScheduleDep", "ActualDep"]
|
21 |
-
columns = ['airport', 'flight_number', 'ontime', 'delayed']
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
def get_num_rows(path):
|
27 |
-
os.path.abspath(path)
|
28 |
-
df = pd.read_csv(path)
|
29 |
-
return df.shape[0]
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
],
|
46 |
-
"dataframe",
|
47 |
-
description="Here you can see how much delayed your flight will be!",
|
48 |
-
)
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
[
|
54 |
-
gr.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
label = 'Tomorrow Flight Delays Prediction',
|
63 |
-
values = download_data(tomorrow_path)
|
64 |
-
),
|
65 |
],
|
66 |
"dataframe",
|
67 |
-
description="Here you can see how much delayed your flight will be!",
|
68 |
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
io2 = gr.Interface()
|
73 |
-
|
74 |
-
gr.TabbedInterface(
|
75 |
-
[io1, io2], {"Today's Flight", "Tomorrow's Flight"}
|
76 |
-
).launch(share = True)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import hopsworks
|
4 |
+
import math
|
5 |
import os
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def download_data(path):
|
8 |
os.path.abspath(path)
|
9 |
df = pd.read_csv(path)
|
10 |
+
wanted_df = df[['airport', 'flight_number', 'ontime', 'delayed']].copy()
|
11 |
+
return wanted_df
|
12 |
|
13 |
+
def access_online_dataframe():
|
14 |
+
# Get data from online source
|
15 |
+
hopsworks_api_key = os.environ['HOPSWORKS_API_KEY']
|
16 |
+
project = hopsworks.login(api_key_value = hopsworks_api_key)
|
17 |
+
dataset_api = project.get_dataset_api()
|
18 |
+
today_path = dataset_api.download("Resources/today_timetable_prediction/today_timetable_prediction.csv", overwrite=True)
|
19 |
+
tomorrow_path = dataset_api.download("Resources/tomorrow_timetable_prediction/tomorrow_timetable_prediction.csv", overwrite=True)
|
20 |
+
today_df = download_data(today_path)
|
21 |
+
tomorrow_df = download_data(tomorrow_path)
|
22 |
+
return today_df, tomorrow_df
|
23 |
|
|
|
|
|
24 |
|
25 |
+
def get_possible_destinations():
|
26 |
+
today_df, tomorrow_df = access_online_dataframe()
|
27 |
+
total_df = pd.DataFrame({'airport': pd.concat([today_df['airport'], tomorrow_df['airport']]).drop_duplicates().reset_index(drop=True)})
|
28 |
+
total_dest = (total_df['airport']).tolist()
|
29 |
+
return total_dest
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def get_specific_flights(day, max_delay, departure_hour, ampm, weather, destinations, yes):
|
33 |
+
today_df, tomorrow_df = access_online_dataframe()
|
34 |
+
df = pd.DataFrame()
|
35 |
+
if(day == 'today'):
|
36 |
+
df = today_df
|
37 |
+
else:
|
38 |
+
df = tomorrow_df
|
39 |
+
|
40 |
+
# Remove unwanted destinations
|
41 |
+
destinations = [dest for dest in destinations if dest not in ["That's a reason why I travel alone...", "I prefer not to say"]]
|
42 |
+
|
43 |
+
# Select only flight during the same departure hour
|
44 |
+
df['departure_hour'] = df['departure_time'].str.split(':').str[0].astype(int)
|
45 |
+
df = df[df['departure_hour'] == departure_hour].drop(columns=['departure_hour'])
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Convert time columns to datetime objects
|
48 |
+
df['ontime'] = pd.to_datetime(df['ontime'], format='%H:%M')
|
49 |
+
df['delayed'] = pd.to_datetime(df['delayed'], format='%H:%M')
|
50 |
|
51 |
+
# Get flight with less delay than the given and from the destinations selected, of the right day
|
52 |
+
df['delay'] = (df['delayed'] - df['ontime']).dt.total_seconds() / 60
|
53 |
+
filtered_df = df.loc[(df['delay'] < max_delay) & (df['airport'].isin(destinations)), ['airport', 'flight_number', 'ontime', 'delayed']]
|
54 |
+
|
55 |
+
# Convert the string to datetime, then the datetime column to HH:MM
|
56 |
+
filtered_df['ontime'] = pd.to_datetime(filtered_df['ontime'])
|
57 |
+
filtered_df['ontime'] = filtered_df['ontime'].dt.strftime('%H:%M')
|
58 |
+
filtered_df['delayed'] = pd.to_datetime(filtered_df['delayed'])
|
59 |
+
filtered_df['delayed'] = filtered_df['delayed'].dt.strftime('%H:%M')
|
60 |
|
61 |
+
return filtered_df
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
flights = gr.Interface(
|
66 |
+
get_specific_flights,
|
67 |
[
|
68 |
+
gr.Radio(["today", "tomorrow"], type="value", label="Day", info="When do you have the plane?"),
|
69 |
+
gr.Slider(0, 50, value=20, label="Possible Delay", info="How unfortunate do you wanna be?"),
|
70 |
+
gr.Row(gr.Number(precision=0, minimum=0, maximum=23, label="Departure Time"), gr.Radio(["am", "pm"], type="index", info="It's the same, no worries!")),
|
71 |
+
gr.CheckboxGroup(["Yes, it's cloudy", "I am not in Stockholm"], label="Weather", info="Is it a typical Stockholm day?"),
|
72 |
+
gr.Dropdown(get_possible_destinations() + ["That's a reason why I travel alone...", "I prefer not to say"],
|
73 |
+
type = "value", multiselect=True, label="Destination", value=["That's a reason why I travel alone..."],
|
74 |
+
info="Are you just curious or you are actually going somewhere? Where? With who?"),
|
75 |
+
gr.Radio(["Yes", "Yes", "Yes"], type="index", label="Let's guess?", info="We know that you'll say yes!"),
|
|
|
|
|
|
|
76 |
],
|
77 |
"dataframe",
|
|
|
78 |
)
|
79 |
|
80 |
+
flights.launch()
|
|
|
|
|
|
|
|
|
|
|
|