File size: 6,562 Bytes
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import torch
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from torch.utils.data.dataset import IterableDataset
from collections import deque

from numpy.random import default_rng

DATA = np.load(
    # "/home/seb/Perso/git/sudoku/sudoku_clean/data/sudoku_reshaped_million.npz"
    "sudoku_reshaped_3_million.npz"
)

rng = np.random.default_rng()


def get_datasets(
    add_proba_fill=False, train_size=1280 // 2, test_size=1280 // 2, max_holes=None
):
    quizzes = DATA["quizzes"][: train_size + test_size]
    solutions = DATA["solutions"][: train_size + test_size]
    X = quizzes
    if max_holes:
        while True:
            x_holes = X[:, 1].sum(-1) == 0
            x_nb_holes = x_holes.sum((1, 2))
            mask_x_max_holes = x_nb_holes > max_holes
            if not any(mask_x_max_holes):
                break
            for idx_x in np.nonzero(mask_x_max_holes)[0]:
                sub_x_holes = x_holes[idx_x]
                idx_fill = rng.choice(np.transpose(np.nonzero(sub_x_holes)))
                X[idx_x, :, idx_fill[0], idx_fill[1], :] = solutions[
                    idx_x, :, idx_fill[0], idx_fill[1], :
                ]
    X = X.reshape(X.shape[0], 2, 9 * 9 * 9)
    solutions = solutions.reshape(solutions.shape[0], 2, 9 * 9 * 9)

    X_train, X_test, solutions_train, solutions_test = train_test_split(
        X, solutions, test_size=test_size, random_state=42
    )
    if add_proba_fill:
        X_train_bis = X_train.copy()
        mask = solutions_train == 1
        X_train_bis[mask] = np.random.randint(0, 2, size=mask.sum())
        X_train = np.concatenate([X_train, X_train_bis])
        solutions_train = np.concatenate([solutions_train, solutions_train])

    train = torch.utils.data.TensorDataset(
        torch.Tensor(X_train), torch.Tensor(solutions_train)
    )
    test = torch.utils.data.TensorDataset(
        torch.Tensor(X_test), torch.Tensor(solutions_test)
    )
    return train, test


train_dataset, test_dataset = get_datasets()


def data_loader(batch_size=32, add_proba_fill=False):
    train, test = get_datasets(add_proba_fill=add_proba_fill)

    train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size)

    test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size)

    return train_loader, test_loader


class DataIterBuffer(IterableDataset):
    def __init__(self, raw_dataset=[], buffer_optim=50, prop_new=0.1, seed=1):
        self.raw_dataset = raw_dataset
        # self.raw_dataset = iter(raw_dataset)
        self.buffer = deque()
        self.buffer_optim = buffer_optim
        self.prop_new = prop_new
        self.rng = default_rng(seed=seed)
        self.idx_dataset = 0

    def __iter__(self):
        # while True:
        #     if (np.random.random() < self.prop_new) and (
        #         len(self.buffer) <= self.buffer_optim
        #     ):
        #         try:
        #             yield next(self.raw_dataset)
        #         except StopIteration:
        #             if len(self.buffer) != 0:
        #                 yield self.buffer.popleft()
        #             else:
        #                 break
        #     else:
        #         if len(self.buffer) != 0:
        #             yield self.buffer.popleft()
        #         else:
        #             try:
        #                 yield next(self.raw_dataset)
        #             except StopIteration:
        #                 break
        while True:
            if (np.random.random() < self.prop_new) and (
                len(self.buffer) <= self.buffer_optim
            ):
                if self.idx_dataset >= len(self.raw_dataset):
                    if len(self.buffer) != 0:
                        yield self.buffer.popleft()
                    else:
                        break
                else:
                    yield self.raw_dataset[self.idx_dataset]
                    self.idx_dataset += 1
            else:
                if len(self.buffer) != 0:
                    yield self.buffer.popleft()
                else:
                    if self.idx_dataset >= len(self.raw_dataset):
                        break
                    else:
                        yield self.raw_dataset[self.idx_dataset]
                        self.idx_dataset += 1

    def append(self, X, Y) -> None:
        """Add experience to the buffer.

        Args:
            experience: tuple (state, action, reward, done, new_state)
        """

        X[Y == 0] = 0
        mask = ~(X == Y).view(-1, 2 * 729).all(dim=1)

        for x, y in zip(X[mask], Y[mask]):
            self.buffer.append((x, y))

    def __len__(self):
        return len(self.buffer) + len(self.raw_dataset)


# class DataIterDeepBuffer(IterableDataset):
#     def __init__(self, raw_dataset=[], buffer_target_size=32, prop_new=0.1, seed=1, prof=6):
#         self.raw_dataset = iter(raw_dataset)
#         # self.buffer = deque()
#         self.buffer_target_size = buffer_target_size
#         self.prop_new = prop_new
#         self.rng = default_rng(seed=seed)
#         self.prof=prof
#         self.buffers=[deque() for _ in range(prof)]

#     def __iter__(self):
#         while True:
#             buffer_sizes = np.array([len(buffer) for buffer in self.buffers])
#             if any(buffer_sizes>=self.buffer_target_size):
#                 #

#             if (np.random.random() < self.prop_new) and (
#                 len(self.buffer) <= self.buffer_optim
#             ):
#                 try:
#                     yield next(self.raw_dataset)
#                 except StopIteration:
#                     if len(self.buffer) != 0:
#                         yield self.buffer.popleft()
#                     else:
#                         break
#             else:
#                 if len(self.buffer) != 0:
#                     yield self.buffer.popleft()
#                 else:
#                     try:
#                         yield next(self.raw_dataset)
#                     except StopIteration:
#                         break

#     def append(self, X, Y) -> None:
#         """Add experience to the buffer.

#         Args:
#             experience: tuple (state, action, reward, done, new_state)
#         """

#         X[Y == 0] = 0
#         mask = ~(X == Y).view(-1, 2 * 729).all(dim=1)

#         for x, y in zip(X[mask], Y[mask]):
#             self.buffer.append((x, y))

#     def __len__(self):
#         return len(self.buffer) + len(self.raw_dataset)