File size: 4,304 Bytes
4484b8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
from torch import nn
import torch
from sudoku.symetries import mat_sym
class SudokuNet(nn.Module):
def __init__(self, n_output=2, coef_hidden=4):
super(SudokuNet, self).__init__()
self.hidden_neural_number = mat_sym.shape[1]
self.conv111 = nn.Conv1d(
self.hidden_neural_number * 2,
self.hidden_neural_number * 2 * coef_hidden,
1,
groups=self.hidden_neural_number * 2,
)
self.conv111_last = nn.Conv1d(
self.hidden_neural_number * 2 * coef_hidden, n_output, 1
)
sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor)
self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False)
def forward(self, x):
x = torch.tensordot(x, self.sym_tensor, dims=([2], [2]))
x = x.view(-1, 2, 9 * 9 * 9, self.hidden_neural_number)
x = x.permute(0, 1, 3, 2)
x = x.contiguous().view(-1, self.hidden_neural_number * 2, 9 * 9 * 9)
x = torch.relu(self.conv111(x))
x = self.conv111_last(x)
return x
class SymPreprocess(nn.Module):
def __init__(self):
super().__init__()
self.hidden_neural_number = mat_sym.shape[1]
sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor)
self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False)
def forward(self, x):
n_channel = x.shape[1]
x = torch.tensordot(x, self.sym_tensor, dims=([2], [2]))
x = x.view(-1, n_channel, 9 * 9 * 9, self.hidden_neural_number)
x = x.permute(0, 1, 3, 2)
x = x.contiguous().view(-1, self.hidden_neural_number * n_channel, 9 * 9 * 9)
return x
class SmallNet(nn.Module):
def __init__(self, n_output=2, coef_hidden=4, n_input_channel=2):
super(SmallNet, self).__init__()
self.hidden_neural_number = mat_sym.shape[1]
self.conv111 = nn.Conv1d(
self.hidden_neural_number * n_input_channel,
self.hidden_neural_number * n_input_channel * coef_hidden,
1,
groups=self.hidden_neural_number * n_input_channel,
)
self.conv111_last = nn.Conv1d(
self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1
)
def forward(self, x):
x = torch.relu(self.conv111(x))
x = self.conv111_last(x)
return x
class SmallNetBis(nn.Module):
def __init__(self, n_output=2, coef_hidden=2, n_input_channel=2):
super(SmallNetBis, self).__init__()
self.hidden_neural_number = mat_sym.shape[1] * 2
self.conv111 = nn.Conv1d(
self.hidden_neural_number * n_input_channel,
self.hidden_neural_number * n_input_channel * coef_hidden,
1,
groups=self.hidden_neural_number * n_input_channel,
)
self.conv111_last = nn.Conv1d(
self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1
)
def forward(self, x):
x = torch.cat([x, 1 - x], dim=1)
x = torch.relu(self.conv111(x))
x = self.conv111_last(x)
return x
class SplittedSmallNet(nn.Module):
def __init__(self, coef_hidden=4, n_input_channel=2):
super().__init__()
self.hidden_neural_number = mat_sym.shape[1]
self.conv111_0 = nn.Conv1d(
self.hidden_neural_number * n_input_channel,
self.hidden_neural_number * n_input_channel * coef_hidden,
1,
groups=self.hidden_neural_number * n_input_channel,
)
self.conv111_1 = nn.Conv1d(
self.hidden_neural_number * n_input_channel,
self.hidden_neural_number * n_input_channel * coef_hidden,
1,
groups=self.hidden_neural_number * n_input_channel,
)
self.conv111_last_0 = nn.Conv1d(
self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1
)
self.conv111_last_1 = nn.Conv1d(
self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1
)
def forward(self, x):
x_0 = torch.relu(self.conv111_0(x))
x_0 = self.conv111_last_0(x_0)
x_1 = torch.relu(self.conv111_1(x))
x_1 = self.conv111_last_1(x_1)
return torch.cat([x_0, x_1], dim=1)
|