File size: 39,254 Bytes
4484b8a
 
 
 
 
 
 
 
 
 
19320e5
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19320e5
 
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4d5f4
 
 
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4d5f4
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19320e5
4484b8a
 
 
 
 
 
19320e5
 
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19320e5
 
 
 
4484b8a
 
19320e5
4484b8a
 
 
 
19320e5
 
 
 
4484b8a
 
 
cd4d5f4
19320e5
cd4d5f4
 
 
0583ac6
 
19320e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0583ac6
 
 
 
 
 
 
19320e5
0583ac6
 
19320e5
0583ac6
19320e5
 
 
 
 
 
 
0583ac6
 
 
19320e5
 
 
 
0583ac6
4484b8a
cd4d5f4
4484b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
from math import copysign
import torch
from torch import nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
import pytorch_lightning as pl
from sudoku.models import SmallNetBis, SymPreprocess
import torch.nn.functional as F

from sudoku.buffer import BufferArray, Buffer
from sudoku.trial_grid import TrialGrid
from sudoku.helper import pos_to_digit_col_row

from copy import deepcopy


class SudokuLightning(pl.LightningModule):
    def __init__(
        self,
        lr=0.1,
        margin=0.1,  # th marge?
        coef_0=10,
        nets_number=6,
        nets_training_number=1,
        batch_size=32,
    ):
        super().__init__()
        self.nets_number = nets_number
        self.batch_size = batch_size
        self.nets_training_number = nets_training_number
        # self.nets=[SmallNetBis() for _ in range(self.nets_number)]
        self.nets = nn.ModuleList([SmallNetBis() for _ in range(self.nets_number)])
        self.buffer = BufferArray(self.nets_number, self.batch_size)
        self.sym_preprocess = SymPreprocess()
        pos_weight = torch.ones((2, 9 * 9 * 9))
        pos_weight[0, :] = 1.0 / 8.0
        pos_weight[1, :] = 1.0
        pos_weight /= coef_0
        weight = torch.ones((2, 9 * 9 * 9))
        weight[0, :] = 8.0
        weight[1, :] = 1.0
        weight *= coef_0

        self.bcewll = nn.BCEWithLogitsLoss(
            pos_weight=pos_weight, weight=weight, reduce=False
        )
        self.lr = lr
        # self.auroc = AUROC(task='binary')

        self.margin = margin
        self.th_epsilon = margin * 0.01
        self.threshold_pres = torch.tensor([-10.0 for _ in range(nets_number)])
        self.threshold_abs = torch.tensor([-10.0 for _ in range(nets_number)])

        self.automatic_optimization = False
        self.reset_threshold_on_validation = True

    def configure_optimizers(self):
        # no need config scheduler -> manual optimisation
        optimizers = []
        for net in self.nets:
            opti = torch.optim.Adam(net.parameters(), lr=self.lr)
            optimizers.append(
                {
                    "optimizer": opti,
                    "lr_scheduler": ReduceLROnPlateau(opti, "min"),
                }
            )
        return optimizers

    # def configure_optimizers(self):
    #     optimizer1 = Adam(...)
    #     optimizer2 = SGD(...)
    #     scheduler1 = ReduceLROnPlateau(optimizer1, ...)
    #     scheduler2 = LambdaLR(optimizer2, ...)
    #     return (
    #         {
    #             "optimizer": optimizer1,
    #             "lr_scheduler": {
    #                 "scheduler": scheduler1,
    #                 "monitor": "metric_to_track",
    #             },
    #         },
    #         {"optimizer": optimizer2, "lr_scheduler": scheduler2},
    #     )

    #     lr_scheduler_config = {
    #     # REQUIRED: The scheduler instance
    #     "scheduler": lr_scheduler,
    #     # The unit of the scheduler's step size, could also be 'step'.
    #     # 'epoch' updates the scheduler on epoch end whereas 'step'
    #     # updates it after a optimizer update.
    #     "interval": "epoch",
    #     # How many epochs/steps should pass between calls to
    #     # `scheduler.step()`. 1 corresponds to updating the learning
    #     # rate after every epoch/step.
    #     "frequency": 1,
    #     # Metric to to monitor for schedulers like `ReduceLROnPlateau`
    #     "monitor": "val_loss",
    #     # If set to `True`, will enforce that the value specified 'monitor'
    #     # is available when the scheduler is updated, thus stopping
    #     # training if not found. If set to `False`, it will only produce a warning
    #     "strict": True,
    #     # If using the `LearningRateMonitor` callback to monitor the
    #     # learning rate progress, this keyword can be used to specify
    #     # a custom logged name
    #     "name": None,
    # }
    # lr_scheduler_config = {'scheduler: lr_sch, interval: epoch, frequency: 1, monitor: 'val_loss'}

    def forward_layer(self, x, idx=0):
        x = self.sym_preprocess.forward(x)
        return self.nets[idx](x)

    def forward(self, x):
        for idx in range(self.nets_number):
            output = self.forward_layer(x, idx)
            new_X = self.compute_new_X(output, x, idx, None, train=False)
            improved_mask = ((new_X == 1) & (x == 0)).any(dim=1).any(dim=1)
            if improved_mask.sum() > 0:
                return idx, new_X
        return idx, new_X

    def predict_from_net(self, x, net, th_abs, th_pres):
        x = self.sym_preprocess.forward(x)
        x = net(x)
        new_x = torch.empty(x.shape, device=x.device)
        new_x[:, 0] = (x[:, 0] > th_abs).float()
        new_x[:, 1] = (x[:, 1] > th_pres).float()
        return new_x

    @staticmethod
    def mask_uncomplete(x, y):
        mask_uncomplete = x.reshape(-1, 2, 9, 9, 9).sum(-1) < torch.tensor((8, 1)).to(
            x
        ).reshape(1, 2, 1, 1)
        mask_uncomplete = mask_uncomplete.reshape(-1, 2, 9, 9, 1)
        mask = ((x == 0).reshape(-1, 2, 9, 9, 9) * mask_uncomplete).reshape(
            -1, 2, 9**3
        )
        mask = mask.float()
        return mask

    def computing_loss(self, x, y, output):
        loss = self.bcewll(output, y)
        mask = self.mask_uncomplete(x, y)
        loss = (loss * mask).sum()

        return loss

    def training_step(self, batch, batch_idx):
        self.log(
            "train_grid_count",
            batch[0].shape[0],
            reduce_fx=torch.sum,
            on_epoch=True,
            on_step=False,
        )

        self.layer_training_step(0, batch)
        while True:
            idx, batch = self.buffer.get_batch()
            if batch is None:
                break
            # check if the train should be done by comparing lr from sch = self.lr_schedulers()
            # if self.lr != sch[idx].get_last_lr():
            self.layer_training_step(idx, batch)

    def validation_step(self, batch, batch_idx):
        self.layer_training_step(0, batch, train=False)
        while True:
            idx, batch = self.buffer.get_batch()
            if batch is None:
                break
            # check if the train should be done by comparing lr from sch = self.lr_schedulers()
            # if self.lr != sch[idx].get_last_lr():
            self.layer_training_step(idx, batch, train=False)

    def layer_training_step(
        self, idx, batch, train=True
    ):  # to rename to layer_training_step
        x, y = batch

        prefix = "train" if train else "val"
        self.log(
            f"{prefix}_grid_count_{idx}",
            batch[0].shape[0],
            reduce_fx=torch.sum,
            on_epoch=True,
            on_step=False,
        )

        output = self.forward_layer(x, idx)
        loss = self.computing_loss(x, y, output)
        if train:

            opt = self.optimizers()#[idx]
            if isinstance(opt, list):
                opt=opt[idx]
            opt.zero_grad()
            self.manual_backward(loss)
            opt.step()

        loss_0 = F.binary_cross_entropy_with_logits(output[:, [0], :], y[:, [0], :])
        loss_1 = F.binary_cross_entropy_with_logits(output[:, [1], :], y[:, [1], :])
        self.log_dict(
            {f"{prefix}_loss_pos": loss_1, f"{prefix}_loss_neg": loss_0}, on_epoch=True
        )

        # accuracy_1 = torch.mean(torch.eq(transform_to_number_1(output), transform_to_number_1(x)).type(torch.float))
        # accuracy_0 = torch.mean(torch.eq(transform_to_number_0(output), transform_to_number_0(x)).type(torch.float))
        # self.log_dict({'accuracy_1': accuracy_1, 'accuracy_0': accuracy_0}, on_epoch=True)
        self.log(f"{prefix}_loss_{idx}", loss)
        # add a count log on (X and x == y)

        new_X = self.compute_new_X(output, x, idx, y, train=train)
        solved_mask = (new_X == y).all(dim=1).all(dim=1)
        new_X = new_X[~solved_mask]
        x = x[~solved_mask]
        y = y[~solved_mask]
        self.log(
            f"{prefix}_resolved_grid_count",
            solved_mask.sum(),
            on_epoch=True,
            on_step=False,
            reduce_fx=torch.sum,
        )
        mask_no_improve = new_X.sum(dim=(1, 2)) <= x.sum(dim=(1, 2))
        self.log(
            f"{prefix}_improved_grid_count_{idx}",
            (~mask_no_improve).sum(),
            on_epoch=True,
            on_step=False,
            reduce_fx=torch.sum,
        )
        # store_new_x
        # TODO keep the log in this method
        # loss per epoch per model boost layer
        # number of error per epoch model boost layer
        # number of resolved puzzles per epochs
        # threshold per epochs per model layer
        # number of sudoku grid

        # number of filled digits per model boost layer per epoch for both pis ans abs
        # add parameter reduce_fx=torch.sum() to numbers
        # th -> on_epoch=False

        self.store_new_x(idx, new_X, x, y)

    def store_new_x(self, idx, new_X, x, y):
        mask_improve = new_X.sum(dim=(1, 2)) > x.sum(dim=(1, 2))
        self.buffer.append(
            idx + 1, (new_X[~mask_improve].clone(), y[~mask_improve].clone())
        )
        self.buffer.append(0, (new_X[mask_improve].clone(), y[mask_improve].clone()))
        # TODO if improve on no improvments -> add one digit from y to new_X and ad it to idx=0

    def compute_new_X(self, output, x, idx, y=None, train=True, mask_adapt_th=None):
        # y could be None
        prefix = "train" if train else "val"
        new_X = torch.empty(output.shape, device=output.device)
        # we could try to make evolv threshold here
        if y is not None:
            # max_th_abs = (
            #     output[:, 0][(x[:, 0] == 0) & (y[:, 0] == 0)].max().item()
            #     + self.th_epsilon
            # )
            max_th_abs = output[:, 0][(y[:, 0] == 0)].max().item() + self.th_epsilon
            max_th_pres = (
                output[:, 1][(x[:, 1] == 0) & (y[:, 1] == 0)].max().item()
                + self.th_epsilon
            )
            if mask_adapt_th is None or (mask_adapt_th.sum()>0):
                if mask_adapt_th is not None and (mask_adapt_th.sum()>0):
                    max_th_abs = output[mask_adapt_th, 0][(y[mask_adapt_th, 0] == 0)].max().item() + self.th_epsilon
                    max_th_pres = (
                        output[mask_adapt_th, 1][(x[mask_adapt_th, 1] == 0) & (y[mask_adapt_th, 1] == 0)].max().item()
                        + self.th_epsilon
                    )
                self.threshold_abs[idx] = max(max_th_abs, self.threshold_abs[idx])
                self.threshold_pres[idx] = max(max_th_pres, self.threshold_pres[idx])
                self.log_dict(
                    {
                        f"{prefix}_th_abs_{idx}": self.threshold_abs[idx],
                        f"{prefix}_th_pres_{idx}": self.threshold_pres[idx],
                    },
                    on_step=True,
                )
                if not train:
                    self.threshold_abs_compute[idx] = max(
                        max_th_abs + self.margin, self.threshold_abs_compute[idx]
                    )
                    self.threshold_pres_compute[idx] = max(
                        max_th_pres + self.margin, self.threshold_pres_compute[idx]
                    )

        if self.training:
            new_X[:, 0] = (output[:, 0].detach() > self.threshold_abs[idx]).float()
            new_X[:, 1] = (output[:, 1].detach() > self.threshold_pres[idx]).float()
        else:
            new_X[:, 0] = (output[:, 0].detach() > self.threshold_abs[idx]).float()
            new_X[:, 1] = (output[:, 1].detach() > self.threshold_pres[idx]).float()
        new_X[x.detach() == 1] = 1
        if y is not None:
            self.log(
                f"{prefix}_count_error_grid_{idx}",
                ((new_X == 1) & (y == 0)).any(dim=1).any(dim=1).sum(),
                on_epoch=True,
                on_step=False,
                reduce_fx=torch.sum,
            )
            if mask_adapt_th is None:
                new_X[y.detach() == 0] = 0 # do not remove the error!!!!!!
            else:
                y_bis = y.detach().clone()
                y_bis[~mask_adapt_th]=1
                new_X[y_bis==0] = 0
        return new_X

    # TODO add idx stuff (one lr scheduler per net)
    # def on_train_epoch_end(self):
    #     sch = self.lr_schedulers()

    #     # If the selected scheduler is a ReduceLROnPlateau scheduler.
    #     if isinstance(sch, torch.optim.lr_scheduler.ReduceLROnPlateau):
    #         sch.step(self.trainer.callback_metrics["loss"])

    def on_validation_epoch_start(self) -> None:
        if self.reset_threshold_on_validation:
            self.threshold_abs_compute = torch.tensor(
                [-10.0 for _ in range(self.nets_number)]
            )
            self.threshold_pres_compute = torch.tensor(
                [-10.0 for _ in range(self.nets_number)]
            )
        else:
            self.threshold_abs_compute = self.threshold_abs
            self.threshold_pres_compute = self.threshold_pres
            
        self.buffer = BufferArray(self.nets_number, self.batch_size)

    def on_train_epoch_start(self) -> None:
        self.buffer = BufferArray(self.nets_number, self.batch_size)
        return super().on_train_epoch_start()

    def on_validation_epoch_end(self):
        # tensorboard = self.logger.experiment
        self.threshold_abs = self.threshold_abs_compute
        self.threshold_pres = self.threshold_pres_compute

        schs = self.lr_schedulers()
        if not isinstance(schs, list):
            schs=[schs]
        for idx, sch in enumerate(schs):
            # sch.step(self.validation.callback_metrics["val_loss_{idx}"])
            try:
                sch.step(self.trainer.callback_metrics[f"val_loss_{idx}"])
            except:
                # print(f"val_loss_{idx} not found")
                pass
            # sch.step(self.trainer.callback_metrics["val_loss_"])

    def on_save_checkpoint(self, checkpoint) -> None:
        "Objects to include in checkpoint file"
        checkpoint["ths_abs"] = self.threshold_abs
        checkpoint["ths_pres"] = self.threshold_pres

    def on_load_checkpoint(self, checkpoint) -> None:
        "Objects to retrieve from checkpoint file"
        self.threshold_abs = checkpoint["ths_abs"]
        self.threshold_pres = checkpoint["ths_pres"]
        self.nets = nn.ModuleList([SmallNetBis() for _ in self.threshold_abs])

    def validate_grids(self, x) -> "torch.tensor":
        return ~(
            (self.sym_preprocess(x)[:, 17].max(dim=1).values > (1 / 8))
            | (self.sym_preprocess(x)[:, 18].max(dim=1).values > (1 / 8))
            | (self.sym_preprocess(x)[:, 19].max(dim=1).values > (1 / 8))
            | (x.view(-1,2,9,9,9)[:,1].sum(dim=-1)>1).any(dim=1).any(dim=1)
            | (x.view(-1,2,9,9,9)[:,0].sum(dim=-1)>8).any(dim=1).any(dim=1)
        )

    # steps to trial error
    #  - get stops
    #    - choose a number -> store it
    #  - process to get either a new stop either a a validation grid fail
    # if validation grid fail back propagate
    #  else choose a number

    # add counter to each grid,
    # add id to each grid id=batch_id + position
    # add validation

    # if non improvment stop ->
    #   - check if id already exist, if true add non improve counter
    #     if non improve counter = 2 -> add grid to trial_error_model_buffer with 1000 step target.
    #   - store the grid to trial_error_model deep search dict
    #   - create two grids with counter to 0, same id
    #     add them in the buffer

    # - when validation fail ->
    #    - check if id already exist
    #       if true: add grid to trial_error_model with the counter
    #       if false: raise error

# TODO adapt training to something softer
# 
class TrialEveryPosException(Exception):
    pass

class SudokuTrialErrorLightning(SudokuLightning):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.deep_backtrack_regressor = SmallNetBis(n_output=1)
        self.trial_error_buffer = Buffer(self.batch_size)
        self.trial_grids = [None]
        # schema:
        # [
        #   idx:
        #    "tried_pos": [
        #   ]
        #   "pos": pos
        #   "no_improve_counter": 0
        # ]
        #
        # self.tracking_grid = []

    def copy_from_model(self, model):
        self.nets = model.nets
        self.threshold_pres = model.threshold_pres
        self.threshold_abs = model.threshold_abs

    def reg(self, x):
        x_reg = self.sym_preprocess.forward(x)
        x_reg = self.deep_backtrack_regressor(x_reg)
        return torch.softmax(x_reg, dim=1)

    def configure_optimizers(self):
        # no need config scheduler -> manual optimisation
        # optimizers = [torch.optim.Adam(net.parameters(), lr=self.lr) for net in self.nets]
        optimizers = []
        for net in self.nets:
            opti = torch.optim.Adam(net.parameters(), lr=self.lr)
            optimizers.append(
                {
                    "optimizer": opti,
                    "lr_scheduler": ReduceLROnPlateau(opti, "min"),
                }
            )
        optimizers.append(
            {
                'optimizer': torch.optim.Adam(self.deep_backtrack_regressor.parameters(), lr=self.lr), 
                "lr_scheduler": ReduceLROnPlateau(opti, "min"),
             }
        )
        return optimizers

    def training_step(self, batch, batch_idx):
        self.log(
            "train_grid_count",
            batch[0].shape[0],
            reduce_fx=torch.sum,
            on_epoch=True,
            on_step=False,
        )
        x, y = batch
        x_idx = torch.zeros(self.batch_size)  # if we are not on trial error x_idx=0
        counters = torch.zeros(self.batch_size)

        self.layer_training_step(0, (x, y, x_idx, counters))
        idx_while=0
        while True:
            idx_while+=1
            if idx_while ==10000:
                print('a while')
            idx, batch = self.buffer.get_batch()
            if batch is None:
                break
            # check if the train should be done by comparing lr from sch = self.lr_schedulers()
            # if self.lr != sch[idx].get_last_lr():
            self.layer_training_step(idx, batch)

        while True:
            trial_error_batch = self.trial_error_buffer.get_batch()
            if trial_error_batch is None:
                break
            self.trial_error_training_step(trial_error_batch)
            
    def validation_step(self, batch, batch_idx):
        x, y = batch
        x_idx = torch.zeros(x.shape[0], dtype=torch.long)  # if we are not on trial error x_idx=0
        counters = torch.zeros(x.shape[0])

        self.layer_training_step(0, (x, y, x_idx, counters), train=False)
        while True:
            idx, batch = self.buffer.get_batch()
            if batch is None:
                break
            # check if the train should be done by comparing lr from sch = self.lr_schedulers()
            # if self.lr != sch[idx].get_last_lr():
            self.layer_training_step(idx, batch, train=False)

        while True:
            trial_error_batch = self.trial_error_buffer.get_batch()
            if trial_error_batch is None:
                break
            self.trial_error_training_step(trial_error_batch, train=False)


    def layer_training_step(
        self, idx, batch, train=True
    ):  # to rename to layer_training_step
        x, y, x_idx, counters = batch

        prefix = "train" if train else "val"
        self.log(
            f"{prefix}_grid_count_{idx}",
            batch[0].shape[0],
            reduce_fx=torch.sum,
            on_epoch=True,
            on_step=False,
        )
        output = self.forward_layer(x, idx)
        loss = self.computing_loss(x[x_idx==0], y[x_idx==0], output[x_idx==0])
        if train:
            pass
            opt = self.optimizers()[idx]
            opt.zero_grad()
            self.manual_backward(loss)
            opt.step()

        loss_0 = F.binary_cross_entropy_with_logits(output[:, [0], :], y[:, [0], :])
        loss_1 = F.binary_cross_entropy_with_logits(output[:, [1], :], y[:, [1], :])
        self.log_dict(
            {f"{prefix}_loss_pos": loss_1, f"{prefix}_loss_neg": loss_0}, on_epoch=True
        )
        self.log(f"{prefix}_loss_{idx}", loss)

        mask_bad_x = ((x==1)&(y==0)).any(dim=1).any(dim=1)
        new_X = self.compute_new_X(output, x, idx, y, train=train, mask_adapt_th=(~mask_bad_x))
        solved_mask = (new_X == y).all(dim=1).all(dim=1)

        new_X = new_X[~solved_mask]
        x = x[~solved_mask]
        y = y[~solved_mask]
        x_idx = x_idx[~solved_mask]
        counters = counters[~solved_mask]
        
        self.log(
            f"{prefix}_resolved_grid_count",
            solved_mask.sum(),
            on_epoch=True,
            on_step=False,
            reduce_fx=torch.sum,
        )
        mask_no_improve = new_X.sum(dim=(1, 2)) <= x.sum(dim=(1, 2))
        self.log(
            f"{prefix}_improved_grid_count_{idx}",
            (~mask_no_improve).sum(),
            on_epoch=True,
            on_step=False,
            reduce_fx=torch.sum,
        )
        # self.store_new_x(idx, new_X, x, y) # TODO create another function (need to increment counter and validate)
        self.process_validation(idx, new_X, x, y, x_idx, counters)

    def process_validation(self, idx, new_X, x, y, x_idx, counters):
        new_X = self.redresse_new_X(new_X,y,x)
        mask_validated = self.validate_grids(new_X)
        # mask_not_validated = (~self.validate_grids(new_X)) & ((x==0)&(y==1)).any(dim=(1,2))
        mask_improve = (new_X.sum(dim=(1, 2)) > x.sum(dim=(1, 2))) & mask_validated
        mask_not_improved = (new_X.sum(dim=(1, 2)) == x.sum(dim=(1, 2))) & mask_validated


        for i, (failed_idx, failed_counter, s_new_X, s_y) in enumerate(zip(
            x_idx[~mask_validated],
            counters[~mask_validated],
            new_X[~mask_validated],
            y[~mask_validated],
        )):
            # when we find failed:
            #  - we store good grid to continue the process # /!\ it is not necessary, the second half will continue to process.
            #  - we store the initial grid with the score (to traine the regressor)
            if failed_idx == 0:
                self.failed_batch = (x[~mask_validated][i], s_y)
                raise ValueError("validation error on no trial-error grid")
            if not ((x[~mask_validated][i]==0)&(s_y==1)).any():
                raise ValueError()
            is_pos = copysign(1, failed_idx)==1
            trial_grid: TrialGrid = self.trial_grids[int(abs(failed_idx))]
            if is_pos:
                trial_grid.pos_result = 'fail'
            else:
                trial_grid.neg_result = 'fail'
            
            self.process_search_store_grid(int(abs(failed_idx)), trial_grid, s_y)

        if idx == self.nets_number - 1:
            for no_improved_idx, s_new_X, s_y in zip(
                x_idx[mask_not_improved], new_X[mask_not_improved], y[mask_not_improved]
            ):
                if no_improved_idx == 0:
                    self.search_trial_buffer_trials(s_new_X, s_y)
                    continue

                is_pos = copysign(1, no_improved_idx)==1
                trial_grid: TrialGrid = self.trial_grids[int(abs(no_improved_idx.item()))]
                if is_pos:
                    trial_grid.pos_result = 'no_improved'
                else:
                    trial_grid.neg_result = 'no_improved'
                assert s_new_X.sum()> trial_grid.initial_grid.sum()
                
                self.process_search_store_grid(int(abs(no_improved_idx)), trial_grid, s_y)

        self.buffer.append(
            idx + 1,
            (new_X[mask_not_improved].clone(), y[mask_not_improved].clone(), x_idx[mask_not_improved].clone(), counters[mask_not_improved].clone()),
        )
        # assert mask_improve.sum()>0
        if ((new_X[mask_improve & (x_idx.to(self.device)==0)]==1) & (y[mask_improve & (x_idx.to(self.device)==0)]==0)).any():
            self.failed_batch=(x[mask_improve & (x_idx.to(self.device)==0)],y[mask_improve & (x_idx.to(self.device)==0)] )
            raise ValueError()
        self.buffer.append(
            0,
            (new_X[mask_improve].clone(), y[mask_improve].clone(), x_idx[mask_improve].clone(), counters[mask_improve].clone() + 1),
        )

    def process_search_store_grid(self, idx, trial_grid: TrialGrid, s_y):
        """_summary_
        if score is 1:
            great 
                if fail -> the second one should continue (it has his id if it stopped)
                    so do nothing
                if no_improved ->
                    trial_error and reset trial_error_grid
        if score is not None -> store the new grid in the trial_error_buffer
        
        if score is -1 => also search_trial and store.
        if store is 1 =>
            if both result are here:
                get the no_improved -> search_trial and store on a new grid
                if one complete grid -> set grid place to None
            else: wait
        
        
        if score is None:
          if grid_idx==-1 or oposite_grid failed:
              we create a new_idx, and store stuff.
          else:
              we store the grid (in case the second grid fail)
          we increment the non_improvement counter

          if non_improvement counter = 2:
              we add the initial grid to the search training buffer
              we process the search training engine to find another grid postion
        else:
          we add the initial grid to the search training buffer
          if a non improved grid is store we create a new_idx and store stuf.

        Args:
            grid_idx (_type_): _description_
            score (_type_): _description_
            s_new_X (_type_): _description_
            s_y (_type_): _description_
        """
        score = trial_grid.score()
        if score is None:
            self.trial_grids[idx]=trial_grid
            return
        # add grid to buffer (initial_grid, score)
        self.trial_error_buffer.append((
            trial_grid.initial_grid.view(-1,2,729),
            torch.tensor([score,],dtype=torch.float).to(self.device),
            torch.tensor([trial_grid.row_col_digit_position,], dtype=torch.long).to(self.device),
        ))
        
        # find the no_improve_grid ~and search_trial~ and add it to buffer
        if trial_grid.neg_result == 'no_improved':
            if trial_grid.pos_result == 'no_improved':
                trial_grid.tried_grid.append(trial_grid.row_col_digit_position)
                trial_grid.neg_result= None
                trial_grid.pos_result= None
                self.trial_grids[idx] = trial_grid
                self.search_trial_buffer_trials(None, s_y, idx)
                # new trial with same idx
                return
            # add to buffer neg grid     
            # we get back the initial grid
            # set the correct row col digit
            # add it the buffer
            # set trial_grids to None
            grid_neg = deepcopy(trial_grid.initial_grid)
            grid_neg[0,trial_grid.row_col_digit_position] = 1
            if ((grid_neg==1) & (s_y==0)).any():
                raise ValueError()
            self.buffer.append(
                0,
                (
                    grid_neg.view(-1,2,729),
                    s_y.clone().view(-1,2,729),
                    torch.tensor([0]),
                    torch.tensor([0]),
                )
            )
            self.trial_grids[idx] = None
            return
        if trial_grid.pos_result == 'no_improved':
            grid_pos = deepcopy(trial_grid.initial_grid)
            grid_pos[1,trial_grid.row_col_digit_position] = 1
            if ((grid_pos==1) & (s_y==0)).any():
                raise ValueError()
            self.buffer.append(
                0,
                (
                    grid_pos.view(-1,2,729),
                    s_y.clone().view(-1,2,729),
                    torch.tensor([0]),
                    torch.tensor([0]),
                )
            )
            self.trial_grids[idx] = None
            # add to buffer pos grid
            return 

        
        # if complete: replace grid by none.
        if "complete" in [trial_grid.neg_result, trial_grid.pos_result]:
            self.trial_grids[idx]=None

    # def store_new_trial_error_grid(self, new_X, y):
    #     """build a new idx add the grid in the tracking stuff
    #         and add grid in the buffer

    #     Args:
    #         new_X (_type_): _description_
    #         y (_type_): _description_
    #     """
    #     ...

    # def store_training_trail_search_batch(self, grid, score):
    #     """store grid to train trial_search nn model

    #     Args:
    #         grid (_type_): _description_
    #         score (_type_): _description_
    #     """
    #     ...

    def search_trial(self, s_new_X, tried_pos):
        """use the trail_search nn model to probe a new

        Args:
            s_new_X (_type_): _description_
            tried_pos (_type_): _description_
        """
        mask_possibility = s_new_X.sum(dim=0)==0
        for pos in tried_pos:
            mask_possibility[pos]=False
        if  mask_possibility.sum()==0:
            print('mask_possible=0')
            raise TrialEveryPosException()
            
        with torch.no_grad():
            x_reg = self.sym_preprocess.forward(s_new_X.view(1,2,-1))
            output = self.deep_backtrack_regressor(x_reg)
        # shape (1, 729)
        # can be regression -> i want the smallest
        # can be logistic regression -> i want the smallest
        # if i do softmax -> i can add 1 to each tried pos
        output = torch.softmax(output[0][0],dim=0)
        # for pos in tried_pos:
        #     output[pos]=1
        output[~mask_possibility]+=1
        return torch.argmin(output, dim=0).item()

    def search_trial_buffer_trials(self, s_new_X, s_y, idx_trial_grids=None):
        
        if idx_trial_grids is None:
            row_col_digit_trial = self.search_trial(s_new_X, [])
            trial_grid = TrialGrid(s_new_X, row_col_digit_trial)
            self.trial_grids.append(TrialGrid(s_new_X, row_col_digit_trial))
            idx_trial_grids = len(self.trial_grids)-1
        else:
            trial_grid = self.trial_grids[idx_trial_grids]
            s_new_X = trial_grid.initial_grid
            row_col_digit_trial = self.search_trial(s_new_X, trial_grid.tried_grid)
            trial_grid.row_col_digit_position = row_col_digit_trial
            self.trial_grids[idx_trial_grids] = trial_grid
            
        # and we add both into buffer.
        grid_pos = deepcopy(s_new_X)
        grid_neg = deepcopy(s_new_X)
        grid_pos[1,row_col_digit_trial] = 1
        grid_neg[0,row_col_digit_trial] = 1
        self.buffer.append(
            0,
            (
                torch.stack([grid_pos,grid_neg], dim=0),
                torch.stack([s_y.clone(),s_y.clone()], dim=0),
                torch.tensor([idx_trial_grids, -idx_trial_grids]),
                torch.tensor([0, 0]),
            )
        )

    def trial_error_training_step(self, batch, train=True):
        x, y, row_col_digit = batch
        prefix = "train" if train else "val"
        self.log(
            f"{prefix}_grid_count_trial_error_training",
            batch[0].shape[0],
            reduce_fx=torch.sum,
            on_epoch=True,
            on_step=False,
        )

        
        x_reg = self.sym_preprocess.forward(x)
        output = self.deep_backtrack_regressor(x_reg)
        loss = nn.functional.binary_cross_entropy_with_logits(output[[i for i in range(self.batch_size)], 0, row_col_digit], y, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None) 
        # # depending the distribution of the target, the weight could be different
        # loss = binary (output[:,0,row_col_digit], y)
        # loss = self.computing_loss(x, y, output)
        if train:
            opt = self.optimizers()[-1]
            opt.zero_grad()
            self.manual_backward(loss)
            opt.step()
            
        self.log(f"{prefix}_loss_trial_error", loss)
        self.log(f"{prefix}_loss_{self.nets_number}", loss)
        self.log(f"{prefix}_y_pos_trial_error", y.sum())
        self.log(f"{prefix}_y_neg_trial_eror", y.shape[0]-y.sum())

    def predict(self, x, func_text_display=None):
        """ return an improvement of x
        
        """
        
        idx, new_X = self.forward(x.view(-1,2,729))
        if (new_X.sum()>x.sum()) or (new_X.sum()==729):
            if func_text_display:
                func_text_display(f'boost layer step: {idx}')
            return new_X
        else:
            # call trial error until we find a solution
            tried_position = []
            while True:
                pos = self.search_trial(x.view(2,729), tried_position)
                tried_position.append(pos)
                # creat pos neg tensor
                grid_pos = deepcopy(x.view(2,729))
                grid_neg = deepcopy(x.view(2,729))
                grid_pos[1,pos] = 1
                grid_neg[0,pos] = 1
                X_tried = torch.stack([grid_neg, grid_pos], dim=0)
                # process it 
                while True:
                    idx, new_X = self.forward(X_tried)
                    mask_validated = self.validate_grids(new_X)
                    if mask_validated.sum()<2:
                        x[0, mask_validated, pos] = 1 # TODO check if it work
                        if func_text_display:
                            digit, col, row = pos_to_digit_col_row(pos)
                            func_text_display('model failed to improve the grid')
                            func_text_display(f'trial error alogorithm, found error at digit: {digit}, col: {col}, row: {row}')
                        return x
                    if X_tried.sum()==new_X.sum():
                            # if both stop to improve -> break it will tried an new pos
                        break
                    mask_complete = (X_tried.sum(dim=1)==729)# check if it works
                    if mask_complete.sum()>0:
                        x[0, mask_complete, pos] = 1
                        if func_text_display:
                            digit, col, row = pos_to_digit_col_row(pos)
                            func_text_display('model failed to improve the grid')
                            func_text_display(f'trial error alogorithm, complete the grid with digit: {digit}, col: {col}, row: {row}')
                        return x
                    X_tried = new_X
                    # if one of X_tried is complete (weird but possible) -> return x with tried_position mask_complet set to 1 (cause we still want a step by step resolution)
    
    def backtracking_predict(self, x, use_trial_error=False, assumption=[], func_text_display=None, func_tensor_display=None):
        """
        return is_valid, new_x
        """
        next_X = deepcopy(x)
        sum_1 = next_X.sum().item()
        if use_trial_error:
            while True:
                try:
                    next_X = self.predict(next_X.view(1,2,729))
                    if not self.validate_grids(next_X)[0].item():
                        if assumption is not []:
                            func_text_display(f'assumption {assumption[-1]}, failed')
                            func_text_display(f'assumption length {len(assumption)}')
                            func_tensor_display(next_X)
                            return False, None
                    if next_X.sum()>=729:
                        if assumption is not []:
                            func_text_display(f'assumption length {len(assumption)}')
                            func_tensor_display(next_X)
                        return True, next_X
                except TrialEveryPosException:
                    break
                
        else:
            while True:
                _idx, next_X = self.forward(next_X.view(1,2,729))
                if not self.validate_grids(next_X)[0].item():
                    return False, None
                sum_2 = next_X.sum().item()
                if sum_1==sum_2:
                    break
                else:
                    sum_1=sum_2
            if next_X.sum()>=729:
                return True, next_X
        
        pos = self.search_trial(next_X.view(2,729), [])
        new_x = deepcopy(next_X.view(1,2,729))
        output = self.forward_layer(next_X.view(1,2,729))
        pos_output = output[0,:,pos]
        if (pos_output[0].item()-self.threshold_abs[0].item())>(pos_output[1].item()-self.threshold_pres[0].item()):
            trial_abs_pres = 0
            abs_pres_str = 'abs'
        else:
            trial_abs_pres = 1
            abs_pres_str = 'pres'
        new_x[0,trial_abs_pres,pos]=1
        # print(f'assuming {(pos, pos%9, (pos//9)%9, pos//(9*9), trial_abs_pres)}')# i+j*9+n*9*9
        digit, col, row = pos_to_digit_col_row(pos)
        func_text_display('grid not improving adding the assuption')
        current_assumption = f'{abs_pres_str}, digit: {digit}, col: {col}, row: {row}'
        func_text_display(current_assumption)
        assumption.append(current_assumption)
        is_valid, new_x = self.backtracking_predict(new_x, use_trial_error=use_trial_error, assumption=assumption, func_text_display=func_text_display, func_tensor_display=func_tensor_display)
        if not is_valid:
            new_x = deepcopy(next_X.view(1,2,729))
            new_x[0,(trial_abs_pres+1)%2,pos]=1
            # print(f'finally assuming {(pos, pos%9, (pos//9)%9, pos//(9*9), (trial_abs_pres+1)%2)}')# i+j*9+n*9*9
            current_assumption = f'{"pres" if abs_pres_str=="abs" else "abs"}, digit: {digit}, col: {col}, row: {row}'
            func_text_display(current_assumption)
            return self.backtracking_predict(new_x, use_trial_error=use_trial_error, assumption=assumption, func_text_display=func_text_display, func_tensor_display=func_tensor_display)
        return True, new_x
            
    
    def on_validation_epoch_start(self) -> None:
        # self.buffer = BufferArray(self.nets_number, self.batch_size)
        self.trial_error_buffer = Buffer(self.batch_size)
        self.trial_grids = [None]
        return super().on_validation_epoch_start()
        
    def on_train_epoch_start(self) -> None:
        self.trial_error_buffer = Buffer(self.batch_size)
        self.trial_grids = [None]
        return super().on_train_epoch_start()

    def redresse_new_X(self, new_X,y,x):
        mask_bad_x = ((x==1)&(y==0)).any(dim=1).any(dim=1)
        y_bis = y.clone()
        y_bis[mask_bad_x]=1
        new_X[y_bis==0]=0        
        return new_X


# ADD threshold adjustment during prediction
# or maybe validate? on it? bah oui!