File size: 6,717 Bytes
fcaceff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_data = pd.read_csv(\"sudoku-3m.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>puzzle</th>\n",
       "      <th>solution</th>\n",
       "      <th>clues</th>\n",
       "      <th>difficulty</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "      <td>1..5.37..6.3..8.9......98...1.......8761.........</td>\n",
       "      <td>1985437266432785915276198439147352688761924352...</td>\n",
       "      <td>27</td>\n",
       "      <td>2.2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "      <td>...81.....2........1.9..7...7..25.934.2..........</td>\n",
       "      <td>9348172567286534196159427381764258934523981673...</td>\n",
       "      <td>23</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "      <td>..5...74.3..6...19.....1..5...7...2.9....58..7...</td>\n",
       "      <td>2159837463876542194692713855387169249413258677...</td>\n",
       "      <td>25</td>\n",
       "      <td>2.6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "      <td>........5.2...9....9..2...373..481.....36....5...</td>\n",
       "      <td>4738169256285397411954278637329481569413652785...</td>\n",
       "      <td>26</td>\n",
       "      <td>1.4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>5</td>\n",
       "      <td>.4.1..............653.....1.8.9..74...24..91.....</td>\n",
       "      <td>9471536821286493576532874913819267455724389164...</td>\n",
       "      <td>25</td>\n",
       "      <td>1.1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   id                                             puzzle  \\\n",
       "0   1  1..5.37..6.3..8.9......98...1.......8761.........   \n",
       "1   2  ...81.....2........1.9..7...7..25.934.2..........   \n",
       "2   3  ..5...74.3..6...19.....1..5...7...2.9....58..7...   \n",
       "3   4  ........5.2...9....9..2...373..481.....36....5...   \n",
       "4   5  .4.1..............653.....1.8.9..74...24..91.....   \n",
       "\n",
       "                                            solution  clues  difficulty  \n",
       "0  1985437266432785915276198439147352688761924352...     27         2.2  \n",
       "1  9348172567286534196159427381764258934523981673...     23         0.0  \n",
       "2  2159837463876542194692713855387169249413258677...     25         2.6  \n",
       "3  4738169256285397411954278637329481569413652785...     26         1.4  \n",
       "4  9471536821286493576532874913819267455724389164...     25         1.1  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_data['puzzle'] = new_data['puzzle'].apply(lambda x: x.replace('.','0'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "quizzes = []\n",
    "solutions = []\n",
    "for idx, row in new_data.iterrows():\n",
    "    quizz = row[\"puzzle\"]\n",
    "    solution = row[\"solution\"]\n",
    "    quizzes.append(np.array([int(x) for x in quizz],).reshape(9,9).astype(np.uint8))\n",
    "    solutions.append(np.array([int(x) for x in solution]).reshape(9,9).astype(np.uint8))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((3000000, 9, 9), (3000000, 9, 9))"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "quizzes = np.stack(quizzes)\n",
    "solutions = np.stack(solutions)\n",
    "quizzes.shape, solutions.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "sol = np.zeros((solutions.shape[0],2,9,9,9), dtype=np.uint8)\n",
    "quizz = np.zeros((solutions.shape[0],2,9,9,9), dtype=np.uint8)\n",
    "for i in range(9):\n",
    "    sol[:,1,:,:,i] = (solutions==i+1).astype(np.uint8)\n",
    "    sol[:,0,:,:,i] = ((solutions!=i+1) & (solutions!=0)).astype(np.uint8)\n",
    "    quizz[:,1,:,:,i] = (quizzes==i+1).astype(np.uint8)\n",
    "    quizz[:,0,:,:,i] = ((quizzes!=i+1) & (quizzes!=0)).astype(np.uint8)\n",
    "    \n",
    "np.savez(\"sudoku_reshaped_3_million.npz\",quizzes=quizz[:1000000],solutions=sol[:1000000])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}