|
from torch import nn |
|
import torch |
|
from sudoku.symetries import mat_sym |
|
|
|
|
|
class SudokuNet(nn.Module): |
|
def __init__(self, n_output=2, coef_hidden=4): |
|
super(SudokuNet, self).__init__() |
|
self.hidden_neural_number = mat_sym.shape[1] |
|
|
|
self.conv111 = nn.Conv1d( |
|
self.hidden_neural_number * 2, |
|
self.hidden_neural_number * 2 * coef_hidden, |
|
1, |
|
groups=self.hidden_neural_number * 2, |
|
) |
|
self.conv111_last = nn.Conv1d( |
|
self.hidden_neural_number * 2 * coef_hidden, n_output, 1 |
|
) |
|
|
|
sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor) |
|
self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False) |
|
|
|
def forward(self, x): |
|
x = torch.tensordot(x, self.sym_tensor, dims=([2], [2])) |
|
x = x.view(-1, 2, 9 * 9 * 9, self.hidden_neural_number) |
|
x = x.permute(0, 1, 3, 2) |
|
x = x.contiguous().view(-1, self.hidden_neural_number * 2, 9 * 9 * 9) |
|
x = torch.relu(self.conv111(x)) |
|
x = self.conv111_last(x) |
|
return x |
|
|
|
|
|
class SymPreprocess(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.hidden_neural_number = mat_sym.shape[1] |
|
sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor) |
|
self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False) |
|
|
|
def forward(self, x): |
|
n_channel = x.shape[1] |
|
x = torch.tensordot(x, self.sym_tensor, dims=([2], [2])) |
|
x = x.view(-1, n_channel, 9 * 9 * 9, self.hidden_neural_number) |
|
x = x.permute(0, 1, 3, 2) |
|
x = x.contiguous().view(-1, self.hidden_neural_number * n_channel, 9 * 9 * 9) |
|
return x |
|
|
|
|
|
class SmallNet(nn.Module): |
|
def __init__(self, n_output=2, coef_hidden=4, n_input_channel=2): |
|
super(SmallNet, self).__init__() |
|
self.hidden_neural_number = mat_sym.shape[1] |
|
|
|
self.conv111 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel, |
|
self.hidden_neural_number * n_input_channel * coef_hidden, |
|
1, |
|
groups=self.hidden_neural_number * n_input_channel, |
|
) |
|
self.conv111_last = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.conv111(x)) |
|
x = self.conv111_last(x) |
|
return x |
|
|
|
|
|
class SmallNetBis(nn.Module): |
|
def __init__(self, n_output=2, coef_hidden=2, n_input_channel=2): |
|
super(SmallNetBis, self).__init__() |
|
self.hidden_neural_number = mat_sym.shape[1] * 2 |
|
|
|
self.conv111 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel, |
|
self.hidden_neural_number * n_input_channel * coef_hidden, |
|
1, |
|
groups=self.hidden_neural_number * n_input_channel, |
|
) |
|
self.conv111_last = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.cat([x, 1 - x], dim=1) |
|
x = torch.relu(self.conv111(x)) |
|
x = self.conv111_last(x) |
|
return x |
|
|
|
|
|
class SplittedSmallNet(nn.Module): |
|
def __init__(self, coef_hidden=4, n_input_channel=2): |
|
super().__init__() |
|
self.hidden_neural_number = mat_sym.shape[1] |
|
|
|
self.conv111_0 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel, |
|
self.hidden_neural_number * n_input_channel * coef_hidden, |
|
1, |
|
groups=self.hidden_neural_number * n_input_channel, |
|
) |
|
self.conv111_1 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel, |
|
self.hidden_neural_number * n_input_channel * coef_hidden, |
|
1, |
|
groups=self.hidden_neural_number * n_input_channel, |
|
) |
|
|
|
self.conv111_last_0 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1 |
|
) |
|
self.conv111_last_1 = nn.Conv1d( |
|
self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1 |
|
) |
|
|
|
def forward(self, x): |
|
x_0 = torch.relu(self.conv111_0(x)) |
|
x_0 = self.conv111_last_0(x_0) |
|
|
|
x_1 = torch.relu(self.conv111_1(x)) |
|
x_1 = self.conv111_last_1(x_1) |
|
return torch.cat([x_0, x_1], dim=1) |
|
|