100% accurate Sudoku solving with deep learning algorithm

Sébastien Guissart !

Abstract

Building a deep learning model capable of solving
a Sudoku grid is a real challenge. Solving involves
either backtracking or completing the grid step
by step following logical reasoning (each comple-
tion must be done with certainty). The techniques
used are: the use of Sudoku grid symmetries to
drastically limit the number of model parameters,
training on all grid resolution steps with contin-
uous adaptation of the thresholds applied to the
model outputs leading to the prediction, and a
trial-and-error algorithm that allows the model to
formulate assumptions and test them when the
step is too complex. The model we have built
solves 100% of the grids available to us. To our
knowledge, it is the first to achieve this level of
performance.

1. Introduction

Al and particularly deep learning have made significant ad-
vances in recent decades on games such as chess, go or the
atari suite (Schrittwieser et al., 2020). However, one popular
game, sudoku, has so far failed to find a deep learning algo-
rithm giving solutions as accurate as human ones (human
accuracy being 100%). There are several reasons for this:
firstly, the challenge is less rewarding, given that a multitude
of algorithms can be used to find an exact solution. This
hasn’t discouraged everyone, however, with a number of
articles available on the subject (Park, 2018; Palm et al.,
2017; Wang et al., 2019). The main reason, in our opinion,
is the poor treatment of system symmetries in solution at-
tempts. We also believe that solving such a problem of this
type requires a step-by-step approach, where each step must
provide a precise improvement, which makes standard deep
learning algorithms unsuitable.

The code of the paper is available there (Guissart, 2024)

ICitizen Scientist. Correspondence to: Sébastien Guissart
<sebastien.guissart@gmail.com>.

2. Take advantage of sudoku symmetry

First we need to define the representation of the sudoku grid.
The trivial choice of the matrix representation in which it is
displayed is not the right one: the digits of the cells appear
as quantities. A better option is a one-hot encoding of these
digits. Here we also choose to duplicate the dimension of
the digits into two channels, one for the presence and one
for the absence of the digit. A sudoku grid is therefore
represented by a (9,9,9,2) tensor shape for the column, row,
digit and absence/presence respectively. For each digit-
cell pair (DCP) we therefore have a vector of dimension 2
representing the DCP; if its value is [0,1] we know that the
digit is present in that cell, if its value is [1,0] we know that
it is absent and if its value is [0,0] we don’t know whether it
is present or absent. The aim of the deep learning algorithm
we’ll be implementing is to find a value for all the empty
DCPs.

A Sudoku grid has several symmetries. Many different
permutations can be applied to a grid while maintaining the
validity of the grid.

Permutations are: digit permutation, inside block row and
column permutation, column and row block permutation.

For each DCP, we can construct a set of linear combina-
tions that are invariant under these permutations. This set
of linear combinations is used to construct a feature vector.
Indeed, if we expect the same result for a DCP regardless of
the permutation performed, then the feature vector should
also be invariant under permutation. This concept appears
in many other deep learning models, such as convolutional
neural networks or transformers (which are based on invari-
ant translation symmetry), i.e. a convolutional kernel will
give the same output on the same image patch, whatever the
patch localisation.

We combine these Sudoku group invariant linear combi-
nations as a symmetry feature engineering tensor (SFET)
Figurel.

The dot product of the SFET and the Sudoku grid returns
a feature tensor of the shape (9,9,9, f4;m), where the first
3 dimensions are the column, row, digit dimension and the
last one is the feature vector dimension.

The choice of the linear combination is quite arbitrary, many

Submission and Formatting Instructions for ICML 2025

different choices exist and we choose a set that follows
some intuition. We try to keep it simple by using DCP
masks where each value of the mask has the same position
(permutation wise).

This symmetry treatment drastically reduces the number of
parameters of the deep learning model. without it, the first
layer should naturally be a dense layer with 9 x 9 x 9 di-
mensions in input and output, leading to a ~ 1M parameter
dummy model.

Figure 1. Example of linear combination based on the feature vec-
tor. The red cell corresponds to the DCP target cell, the green cells
correspond to the summed DCP. Each spatial mask corresponds to
2 linear combinations, one with summed digits equal to the target
digits and the other with summed digits different from the target
digits.

3. The model architecture

We design a very simple and robust model with the sym-
metry tensor followed by 1 kernel 3D convolution layers.
In this model architecture, after obtaining the symmetry
feature tensor, each DCP is treated separately through its
own channel. The model contains a very small number of
parameters (512) but allows a robust training Figure2.

4. Model training

We train our model using the 3 million Sudoku puzzle grids
dataset available on Kaggle (Radcliffe, 2020; Dachev, 2010).
We use only 1280 grids for training and validation, as the use
of system symmetries considerably reduces the parameter

Input sudoku grid
shape (9,9)

v

One hot encoding

v

Input sudoku tensor
shape (9.9,9.2)

v

Symetry tensor dot product

v

[Feature tensor]

shape (9,9,9,32)

3d 1 kernel convolution 32 dim 32 groups

v
Tensor
[shape (9,9,9,32)]
-

3d 1 kernel convolution 2 dim

v

[Cutput tensor]

shape (9,9,9.2)

Figure 2. model architecture schema.

space to be explored.

We train the model via a standard gradient descent algorithm
using a binary cross entropy loss (BCE). However, we aim
to build the solution iteratively, at each step applying a
threshold to our output and increasing our grid by a few
DCP values.

The new grid is then used to train with the same strategy.
We stop the iteration when there is no improvement over the
old grid.

The thresholds are initialized first to the most permissive
values and adjusted during training so that the new grids
are error-free. The validation phases are used to reset the
thresholds so that they remain as close as possible to the
optimal solution. See Algorithm1.

This model training description allows us to solve 579/ 1280.
We used 2 strategy to improve the number of solved grid
and reach 100% accuracy.

5. Model boosting strategy

In the training presented above, all the DCPs are trained to
the same level, yet for some the model can find an exact
solution and for others it can only give a probability. We
assume that model training is degraded by this fact. We then
seek to vary the training sample. To do this, we take a list of
models of the same architecture, the first of which is trained
in the standard way, the second is trained on the grids not

Submission and Formatting Instructions for ICML 2025

Algorithm 1 Threshold adaptation

Algorithm 2 Trial error algorithm

margin < 0.1
function ADAPT_THRESHOLD(th, batch)
X,y < batch
output < model. forward(X)
pred < output > th
if any(pred =1) & (y =0) then
th < mazx(output[y = 0]) + margin
end if
end function
LV + —10
Initialize th < LV
for every training and validation epoch do
train epoch loop
for each batch do
train batch
ADAPT_THRESHOLD(th, batch)
end for
Initialize th. < LV
validation epoch loop
for each batch do
validate batch
ADAPT_THRESHOLD(th., batch)
end for
th < th,
end for

resolved by the first and so on. By varying the sampling of
each model, they learn more easily from specific situations.
This strategy improves the result to 597 solved grids over
1280 on the validation set.

6. Trial error Algorithm

The present model manages to solve simple Sudoku grids,
but fails to predict more complex ones. Indeed, some ad-
vanced Sudoku grids involve the use of techniques such as
‘forcing chain‘ (Day, 2000). This kind of technique cannot
appear in the abstraction of our model. So we need to add
a step when a Sudoku grid gets stuck at some point: we
choose an unsolved DCP and try both grids (a grid with
presence of digit assumption and a grid with absent digit
assumption), if one of the solutions leads to a non valid grid
we know the second option is the good one, if both grids get
stuck at solving we try a new DCP. See Algorithm?2.

This simple trial-and-error procedure is sufficient to solve
all the Sudokus we have tried.

To secure the result, we include a model that proposes the
best candidate to the trial-error system. This model has
the same architecture and is trained to predict whether a
candidate DCP will lead to one invalid grid (success) or two
stuck grids (failure).

function PREDICT WITH TRIAL ERROR(z, model)
ZTnew = model.predict(z)
if .0, # = then
return x,,.,,
end if
tm’edDCp = []
while true do
DC Py try = GET DCP TRIAL(Z ., tried pep)
triedpop.append(DC P _to_try)
Initialize x,,¢s, Tqps With =
Tabs [DOPto,try] = [17 0]
xpres[-DCPto,try} = [07]-]
for Tsupps Lo in [(-rpresa xabs)7 (-Tabsy mpres)] do
while true do
Tsupp = model.predict(Tsypp)
if x4, not valid then
return x,
end if
if z ., complete then
return x .,
end if
if £ ,pp DOt improving then
break while
end if
end while
end for
end while
end function

7. Results

It is difficult to be exhaustive about the precision of our best
model, but we have tested it on :

- 100k randomly selected grids from the 3 million grid
dataset.

- 4k of the top 15k grids according to the dataset difficulty
rating.

- some evil grids found on the internet.

- a grid with only 17 digits (the minimum number of digits a
sudoku grid can have in order to have a unique solution).

For each grid tested, the algorithm gave us an exact solution
except one: the Arto Inkala grid (Inkala, 2012). For this grid
the trial error model at some step tries every available DCP
but stops improving. We built a backtracking algorithm to
solve this grid using the trial error model and it worked,
showing the robustness of the algorithm. In the near future
we may write another article describing this algorithm.

Submission and Formatting Instructions for ICML 2025

8. Conclusion

We have built a deep learning model capable of solving all
sudoku grids, up to the hardest. This model is based on the
symmetries inherent in sudoku, which allow us to strongly
restrict the number of model parameters. Finally, as the
first model was robust but did not solve all grids, a trial
error mechanism was implemented. This approach should
be applicable to other NP problems of the same type.

References

Dachev, B. Sudoku generator and solver for node.js.
https://github.com/dachev/sudoku, 2010.

Day, S. O. T. Sudoku techniques: Forcing chains.
https://www.sudokuoftheday.com/
techniques/forcing-chains, 2000.

Guissart, S. Demo and code of current pa-
per. https://huggingface.co/spaces/
SebastienGuissart/deeplearning_
sudoku_solver, 2024.

Inkala, A. Arto inkala sudoku grid. https:
//www.sudokuwiki.org/sudoku.htm?bd=
800000000003600000070090200050007000000045700000100030001000068008500010090000400,
2012.

Palm, R. B., Paquet, U., and Winther, O. Recurrent rela-
tional networks for complex relational reasoning. CoRR,
abs/1711.08028, 2017. URL http://arxiv.org/
abs/1711.08028.

Park, K. Can convolutional neural networks crack sudoku
puzzles? https://github.com/Kyubyong/
sudoku, 2018.

Radcliffe, D. 3 million sudoku puzzles with ratings. https :
//www.kaggle.com/datasets/radcliffe/
3-million-sudoku-puzzles-with-ratings,

2020.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan,
K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E.,
Hassabis, D., Graepel, T., Lillicrap, T., and Silver,
D. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604-609,
December 2020. ISSN 1476-4687. doi: 10.1038/
s41586-020-03051-4. URL http://dx.doi.org/
10.1038/s41586-020-03051-4.

Wang, P., Donti, P. L., Wilder, B., and Kolter, J. Z.
Satnet: Bridging deep learning and logical reason-
ing using a differentiable satisfiability solver. CoRR,
abs/1905.12149, 2019. URL http://arxiv.org/
abs/1905.121409.

https://github.com/dachev/sudoku
https://www.sudokuoftheday.com/techniques/forcing-chains
https://www.sudokuoftheday.com/techniques/forcing-chains
https://huggingface.co/spaces/SebastienGuissart/deeplearning_sudoku_solver
https://huggingface.co/spaces/SebastienGuissart/deeplearning_sudoku_solver
https://huggingface.co/spaces/SebastienGuissart/deeplearning_sudoku_solver
https://www.sudokuwiki.org/sudoku.htm?bd=800000000003600000070090200050007000000045700000100030001000068008500010090000400
https://www.sudokuwiki.org/sudoku.htm?bd=800000000003600000070090200050007000000045700000100030001000068008500010090000400
https://www.sudokuwiki.org/sudoku.htm?bd=800000000003600000070090200050007000000045700000100030001000068008500010090000400
http://arxiv.org/abs/1711.08028
http://arxiv.org/abs/1711.08028
https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku
https://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings
https://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings
https://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
http://arxiv.org/abs/1905.12149
http://arxiv.org/abs/1905.12149

