from torch import nn import torch from sudoku.symetries import mat_sym class SudokuNet(nn.Module): def __init__(self, n_output=2, coef_hidden=4): super(SudokuNet, self).__init__() self.hidden_neural_number = mat_sym.shape[1] self.conv111 = nn.Conv1d( self.hidden_neural_number * 2, self.hidden_neural_number * 2 * coef_hidden, 1, groups=self.hidden_neural_number * 2, ) self.conv111_last = nn.Conv1d( self.hidden_neural_number * 2 * coef_hidden, n_output, 1 ) sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor) self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False) def forward(self, x): x = torch.tensordot(x, self.sym_tensor, dims=([2], [2])) x = x.view(-1, 2, 9 * 9 * 9, self.hidden_neural_number) x = x.permute(0, 1, 3, 2) x = x.contiguous().view(-1, self.hidden_neural_number * 2, 9 * 9 * 9) x = torch.relu(self.conv111(x)) x = self.conv111_last(x) return x class SymPreprocess(nn.Module): def __init__(self): super().__init__() self.hidden_neural_number = mat_sym.shape[1] sym_tensor = torch.from_numpy(mat_sym).type(torch.FloatTensor) self.sym_tensor = nn.Parameter(sym_tensor, requires_grad=False) def forward(self, x): n_channel = x.shape[1] x = torch.tensordot(x, self.sym_tensor, dims=([2], [2])) x = x.view(-1, n_channel, 9 * 9 * 9, self.hidden_neural_number) x = x.permute(0, 1, 3, 2) x = x.contiguous().view(-1, self.hidden_neural_number * n_channel, 9 * 9 * 9) return x class SmallNet(nn.Module): def __init__(self, n_output=2, coef_hidden=4, n_input_channel=2): super(SmallNet, self).__init__() self.hidden_neural_number = mat_sym.shape[1] self.conv111 = nn.Conv1d( self.hidden_neural_number * n_input_channel, self.hidden_neural_number * n_input_channel * coef_hidden, 1, groups=self.hidden_neural_number * n_input_channel, ) self.conv111_last = nn.Conv1d( self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1 ) def forward(self, x): x = torch.relu(self.conv111(x)) x = self.conv111_last(x) return x class SmallNetBis(nn.Module): def __init__(self, n_output=2, coef_hidden=2, n_input_channel=2): super(SmallNetBis, self).__init__() self.hidden_neural_number = mat_sym.shape[1] * 2 self.conv111 = nn.Conv1d( self.hidden_neural_number * n_input_channel, self.hidden_neural_number * n_input_channel * coef_hidden, 1, groups=self.hidden_neural_number * n_input_channel, ) self.conv111_last = nn.Conv1d( self.hidden_neural_number * n_input_channel * coef_hidden, n_output, 1 ) def forward(self, x): x = torch.cat([x, 1 - x], dim=1) x = torch.relu(self.conv111(x)) x = self.conv111_last(x) return x class SplittedSmallNet(nn.Module): def __init__(self, coef_hidden=4, n_input_channel=2): super().__init__() self.hidden_neural_number = mat_sym.shape[1] self.conv111_0 = nn.Conv1d( self.hidden_neural_number * n_input_channel, self.hidden_neural_number * n_input_channel * coef_hidden, 1, groups=self.hidden_neural_number * n_input_channel, ) self.conv111_1 = nn.Conv1d( self.hidden_neural_number * n_input_channel, self.hidden_neural_number * n_input_channel * coef_hidden, 1, groups=self.hidden_neural_number * n_input_channel, ) self.conv111_last_0 = nn.Conv1d( self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1 ) self.conv111_last_1 = nn.Conv1d( self.hidden_neural_number * n_input_channel * coef_hidden, 1, 1 ) def forward(self, x): x_0 = torch.relu(self.conv111_0(x)) x_0 = self.conv111_last_0(x_0) x_1 = torch.relu(self.conv111_1(x)) x_1 = self.conv111_last_1(x_1) return torch.cat([x_0, x_1], dim=1)