SeemG commited on
Commit
1ef726e
·
verified ·
1 Parent(s): 802e1a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -132
app.py CHANGED
@@ -1,146 +1,74 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
 
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
2
  import torch
3
+ # region_offset = torch.tensor(region_offset).int()
4
 
5
+ from utils import gen_image_as_per_prompt
6
 
7
+ styles = ["depthmap", "cosmicgalaxy", "concept-art", "Marc Allante", "midjourney-style", "No style"]
8
+ styleValues = ["learned_embeds_depthmap.bin",
9
+ "learned_embeds_cosmic-galaxy-characters-style.bin",
10
+ "learned_embeds_sd_concept-art.bin",
11
+ "learned_embeds_style-of-marc-allante.bin",
12
+ "learned_embeds_midjourney.bin",
13
+ ""]
14
+ seed_values = [30, 24, 35, 47, 78, 42]
15
 
16
+ styles_dict = dict(zip(styles, styleValues))
17
+ seed_dict = dict(zip(styles, seed_values))
18
 
 
19
 
20
+ # Custom loss function
21
+ def reduce_highlight(images):
22
+ """Calculates the mean absolute error for amber color.
23
+
24
+ Args:
25
+ images: A tensor of shape (batch_size, channels, height, width).
26
+ target_red: Target red value for amber.
27
+ target_green: Target green value for amber.
28
+ target_blue: Target blue value for amber.
 
 
 
 
 
 
 
29
 
30
+ Returns:
31
+ The mean absolute error.
32
+ #target_red=0.8, target_green=0.6, target_blue=0.4
33
+ """
 
34
 
35
+ red_error = torch.abs(images[:, 0] - 0.12).mean()
36
+ green_error = torch.abs(images[:, 1] - 0.2).mean()
37
+ blue_error = torch.abs(images[:, 2] - 0.15).mean()
 
 
 
38
 
39
+ # You can adjust weights for each channel if needed
40
+ amber_error = (red_error + green_error + blue_error) / 3
41
+ return amber_error
 
42
 
43
+ def _inference(text, style, use_loss=False):
44
+ if use_loss:
45
+ image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style], reduce_highlight)
46
+ else:
47
+ image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style])
48
+ return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ title = "Stable Diffusion with different styles"
52
+ description = "In this demo, the word 'puppy' is replaced by the style that is selected"
53
+ examples = [["oil painting of a dragon in puppy style", "mosiac", True],
54
+ ["Spiderman in puppy style", "midjourney", True],
55
+ ["Batman in puppy style", "matrix", False],
56
+ ["Mojo Jojo in puppy style", "No style", False]]
57
 
58
+ demo = gr.Interface(
59
+ _inference,
60
+ inputs=[
61
+ gr.Textbox(placeholder="Type a prompt with word 'puppy' in it..", container=False, scale=7),
62
+ gr.Radio(styles, label="Select a Style"),
63
+ gr.Checkbox(label="Use custom loss")
64
+ ],
65
+ outputs=[
66
+ gr.Image(width=256, height=256, label="output")
67
+ # gr.Text(label="output")
68
+ ],
69
+ title=title,
70
+ description=description,
71
+ examples=examples,
72
+ cache_examples=False
73
+ )
74
+ demo.launch(debug=True)