Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,74 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"
|
44 |
-
]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
|
53 |
-
if
|
54 |
-
|
55 |
-
|
56 |
-
power_device = "CPU"
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
""")
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
145 |
|
146 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
# region_offset = torch.tensor(region_offset).int()
|
4 |
|
5 |
+
from utils import gen_image_as_per_prompt
|
6 |
|
7 |
+
styles = ["depthmap", "cosmicgalaxy", "concept-art", "Marc Allante", "midjourney-style", "No style"]
|
8 |
+
styleValues = ["learned_embeds_depthmap.bin",
|
9 |
+
"learned_embeds_cosmic-galaxy-characters-style.bin",
|
10 |
+
"learned_embeds_sd_concept-art.bin",
|
11 |
+
"learned_embeds_style-of-marc-allante.bin",
|
12 |
+
"learned_embeds_midjourney.bin",
|
13 |
+
""]
|
14 |
+
seed_values = [30, 24, 35, 47, 78, 42]
|
15 |
|
16 |
+
styles_dict = dict(zip(styles, styleValues))
|
17 |
+
seed_dict = dict(zip(styles, seed_values))
|
18 |
|
|
|
19 |
|
20 |
+
# Custom loss function
|
21 |
+
def reduce_highlight(images):
|
22 |
+
"""Calculates the mean absolute error for amber color.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
images: A tensor of shape (batch_size, channels, height, width).
|
26 |
+
target_red: Target red value for amber.
|
27 |
+
target_green: Target green value for amber.
|
28 |
+
target_blue: Target blue value for amber.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
Returns:
|
31 |
+
The mean absolute error.
|
32 |
+
#target_red=0.8, target_green=0.6, target_blue=0.4
|
33 |
+
"""
|
|
|
34 |
|
35 |
+
red_error = torch.abs(images[:, 0] - 0.12).mean()
|
36 |
+
green_error = torch.abs(images[:, 1] - 0.2).mean()
|
37 |
+
blue_error = torch.abs(images[:, 2] - 0.15).mean()
|
|
|
|
|
|
|
38 |
|
39 |
+
# You can adjust weights for each channel if needed
|
40 |
+
amber_error = (red_error + green_error + blue_error) / 3
|
41 |
+
return amber_error
|
|
|
42 |
|
43 |
+
def _inference(text, style, use_loss=False):
|
44 |
+
if use_loss:
|
45 |
+
image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style], reduce_highlight)
|
46 |
+
else:
|
47 |
+
image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style])
|
48 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
title = "Stable Diffusion with different styles"
|
52 |
+
description = "In this demo, the word 'puppy' is replaced by the style that is selected"
|
53 |
+
examples = [["oil painting of a dragon in puppy style", "mosiac", True],
|
54 |
+
["Spiderman in puppy style", "midjourney", True],
|
55 |
+
["Batman in puppy style", "matrix", False],
|
56 |
+
["Mojo Jojo in puppy style", "No style", False]]
|
57 |
|
58 |
+
demo = gr.Interface(
|
59 |
+
_inference,
|
60 |
+
inputs=[
|
61 |
+
gr.Textbox(placeholder="Type a prompt with word 'puppy' in it..", container=False, scale=7),
|
62 |
+
gr.Radio(styles, label="Select a Style"),
|
63 |
+
gr.Checkbox(label="Use custom loss")
|
64 |
+
],
|
65 |
+
outputs=[
|
66 |
+
gr.Image(width=256, height=256, label="output")
|
67 |
+
# gr.Text(label="output")
|
68 |
+
],
|
69 |
+
title=title,
|
70 |
+
description=description,
|
71 |
+
examples=examples,
|
72 |
+
cache_examples=False
|
73 |
+
)
|
74 |
+
demo.launch(debug=True)
|