import gradio as gr import torch # region_offset = torch.tensor(region_offset).int() from utils import gen_image_as_per_prompt styles = ["depthmap", "cosmicgalaxy", "concept-art", "Marc Allante", "midjourney-style", "No style"] styleValues = ["learned_embeds_depthmap.bin", "learned_embeds_cosmic-galaxy-characters-style.bin", "learned_embeds_sd_concept-art.bin", "learned_embeds_style-of-marc-allante.bin", "learned_embeds_midjourney.bin", ""] seed_values = [30, 24, 35, 47, 78, 42] styles_dict = dict(zip(styles, styleValues)) seed_dict = dict(zip(styles, seed_values)) # Custom loss function def reduce_highlight(images): """Calculates the mean absolute error for amber color. Args: images: A tensor of shape (batch_size, channels, height, width). target_red: Target red value for amber. target_green: Target green value for amber. target_blue: Target blue value for amber. Returns: The mean absolute error. #target_red=0.8, target_green=0.6, target_blue=0.4 """ red_error = torch.abs(images[:, 0] - 0.12).mean() green_error = torch.abs(images[:, 1] - 0.2).mean() blue_error = torch.abs(images[:, 2] - 0.15).mean() # You can adjust weights for each channel if needed amber_error = (red_error + green_error + blue_error) / 3 return amber_error def _inference(text, style, use_loss=False): if use_loss: image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style], reduce_highlight) else: image = gen_image_as_per_prompt(text, styles_dict[style], seed_dict[style]) return image title = "Stable Diffusion with different styles" description = "In this demo, the word 'puppy' is replaced by the style that is selected" examples = [["oil painting of a dragon in puppy style", "mosiac", True], ["Spiderman in puppy style", "midjourney", True], ["Batman in puppy style", "matrix", False], ["Mojo Jojo in puppy style", "No style", False]] demo = gr.Interface( _inference, inputs=[ gr.Textbox(placeholder="Type a prompt with word 'puppy' in it..", container=False, scale=7), gr.Radio(styles, label="Select a Style"), gr.Checkbox(label="Use custom loss") ], outputs=[ gr.Image(width=256, height=256, label="output") # gr.Text(label="output") ], title=title, description=description, examples=examples, cache_examples=False ) demo.launch(debug=True)