Spaces:
Paused
Paused
Update model.py
Browse files
model.py
CHANGED
@@ -1,483 +1,449 @@
|
|
1 |
-
# GPT-3 Paper
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
self.c_proj =
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
self.
|
34 |
-
self.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# att = (
|
50 |
-
|
51 |
-
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
##
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
self.c_proj
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
#
|
88 |
-
# Applies the
|
89 |
-
#
|
90 |
-
|
91 |
-
x = self.
|
92 |
-
x = self.
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
class
|
97 |
-
#
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
#
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
self.
|
109 |
-
self.
|
110 |
-
self.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#
|
115 |
-
# Performs
|
116 |
-
#
|
117 |
-
|
118 |
-
x = x + self.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
#
|
141 |
-
#
|
142 |
-
#
|
143 |
-
#
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
#
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
#
|
159 |
-
#
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
from
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
'gpt2':
|
210 |
-
'gpt2-
|
211 |
-
'gpt2-
|
212 |
-
|
213 |
-
|
214 |
-
config_args['
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
sd_keys =
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
sd_keys_hf =
|
229 |
-
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.
|
230 |
-
|
231 |
-
|
232 |
-
#
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
param_dict = {pn: p for pn, p in
|
252 |
-
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
{'params':
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
print(f"num decayed parameter tensors: {len(
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
optimizer
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
torch.
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
#
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
self.
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
tokens =
|
306 |
-
self.tokens
|
307 |
-
print(f'
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
model
|
328 |
-
model.
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
#
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
x, y
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
x, y =
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
model
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
tokens =
|
417 |
-
tokens =
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
torch.manual_seed(42)
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
#
|
434 |
-
|
435 |
-
|
436 |
-
#
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
decoded
|
448 |
-
|
449 |
-
|
450 |
-
# # Join all the decoded texts into a single string and print it
|
451 |
-
# final_decoded_text = "".join(decoded_texts)
|
452 |
-
# print(final_decoded_text)
|
453 |
-
# return final_decoded_text
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
# def gen_text(model,x = x, max_length = 100, num_return_sequences=10):
|
458 |
-
# torch.manual_seed(42)
|
459 |
-
# torch.cuda.manual_seed(42)
|
460 |
-
# while x.size(1) < max_length:
|
461 |
-
# # forward the model to get the logits
|
462 |
-
# with torch.no_grad():
|
463 |
-
# logits = model(x)[0] # (B, T, vocab_size)
|
464 |
-
# # take the logits at the last position
|
465 |
-
# logits = logits[:, -1, :] # (B, vocab_size)
|
466 |
-
# # get the probabilities
|
467 |
-
# probs = F.softmax(logits, dim=-1)
|
468 |
-
# # do top-k sampling of 50 (huggingface pipeline default)
|
469 |
-
# # topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
470 |
-
# topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
471 |
-
# # select a token from the top-k probabilities
|
472 |
-
# # note: multinomial does not demand the input to sum to 1
|
473 |
-
# ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
474 |
-
# # gather the corresponding indices
|
475 |
-
# xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
476 |
-
# # append to the sequence
|
477 |
-
# x = torch.cat((x, xcol), dim=1)
|
478 |
-
|
479 |
-
# # print the generated text
|
480 |
-
# for i in range(num_return_sequences):
|
481 |
-
# tokens = x[i, :max_length].tolist()
|
482 |
-
# decoded = enc.decode(tokens)
|
483 |
-
# print(">", decoded)
|
|
|
1 |
+
# GPT-3 Paper
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import tiktoken
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class CausalSelfAttention(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
#assertion to ensure the embedding dimension is divisible by the number of heads (important for reshaping later).
|
19 |
+
assert config.n_embd % config.n_head == 0
|
20 |
+
|
21 |
+
# key, query, value projections for all heads, but in a batch. Each vector has the same dimension (C) as the input embedding.
|
22 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
23 |
+
|
24 |
+
|
25 |
+
# output projection find the meaning?
|
26 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
27 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
# regularization
|
32 |
+
self.n_head = config.n_head
|
33 |
+
self.n_embd = config.n_embd
|
34 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# x is tokenised version of input.txt
|
38 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
39 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
40 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
41 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
42 |
+
qkv = self.c_attn(x)
|
43 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
44 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
45 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
46 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
47 |
+
|
48 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
49 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))# find what is it???
|
50 |
+
|
51 |
+
# att = F.softmax(att, dim=-1)
|
52 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
## This function combines the dot product, scaling, and softmax operations into a single step.
|
57 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
58 |
+
|
59 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
60 |
+
# output projection
|
61 |
+
y = self.c_proj(y)
|
62 |
+
return y
|
63 |
+
|
64 |
+
|
65 |
+
class MLP(nn.Module):
|
66 |
+
# MLP (Multi-Layer Perceptron)
|
67 |
+
## This class implements a simple multi-layer perceptron (MLP) sub-module.
|
68 |
+
## It's often used within transformers for non-linear transformations.
|
69 |
+
|
70 |
+
def __init__(self, config):
|
71 |
+
#sqeeze and expand
|
72 |
+
super().__init__()
|
73 |
+
#c_fc: Projects the input (x) to a dimension four times larger than the embedding dimension (n_embd).
|
74 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
75 |
+
|
76 |
+
# GELU (Gaussian Error Linear Unit) activation function for non-linearity.
|
77 |
+
#Here, an approximate version using tanh is used.
|
78 |
+
self.gelu = nn.GELU(approximate='tanh')
|
79 |
+
|
80 |
+
# Projects the output back to the original embedding dimension (n_embd).
|
81 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
82 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
|
86 |
+
#Takes the input (x).
|
87 |
+
# Applies the linear layer (c_fc), followed by the GELU activation.
|
88 |
+
# Applies the final projection layer (c_proj).
|
89 |
+
# Returns the transformed output.
|
90 |
+
x = self.c_fc(x)
|
91 |
+
x = self.gelu(x)
|
92 |
+
x = self.c_proj(x)
|
93 |
+
return x
|
94 |
+
|
95 |
+
class Block(nn.Module):
|
96 |
+
# This class combines the CausalSelfAttention layer (explained previously) and the MLP layer to form a single transformer block.
|
97 |
+
# The input is processed through the attention layer, followed by layer normalization and an MLP, and
|
98 |
+
# then again with layer normalization.
|
99 |
+
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
#ln_1: A layer normalization layer applied before the causal self-attention.
|
104 |
+
#attn: An instance of the CausalSelfAttention class (explained previously).
|
105 |
+
#mlp: An instance of the MLP class (explained previously).
|
106 |
+
|
107 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
108 |
+
self.attn = CausalSelfAttention(config)
|
109 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
110 |
+
self.mlp = MLP(config)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
# Takes the input (x).
|
114 |
+
# Performs a residual connection with the output from the causal self-attention layer (attn), preceded by layer normalization (ln_1).
|
115 |
+
# Performs another residual connection with the output from the MLP layer (mlp), preceded by layer normalization (ln_2).
|
116 |
+
# Returns the final output after the second residual connection.
|
117 |
+
x = x + self.attn(self.ln_1(x))
|
118 |
+
x = x + self.mlp(self.ln_2(x))
|
119 |
+
return x
|
120 |
+
|
121 |
+
|
122 |
+
@dataclass
|
123 |
+
class GPTConfig:
|
124 |
+
block_size: int = 1024 # max sequence length
|
125 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
126 |
+
n_layer: int = 12 # number of layers
|
127 |
+
n_head: int = 12 # number of heads
|
128 |
+
n_embd: int = 768 # embedding dimension
|
129 |
+
|
130 |
+
|
131 |
+
class GPT(nn.Module):
|
132 |
+
|
133 |
+
def __init__(self, config):
|
134 |
+
super().__init__()
|
135 |
+
self.config = config
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
# Creates a transformer module dictionary containing several key components:
|
140 |
+
#wte: Word token embedding layer (nn.Embedding). Maps each word index to its corresponding embedding vector.
|
141 |
+
#wpe: Positional embedding layer (nn.Embedding). Adds positional information to the word embeddings.
|
142 |
+
#h: A module list containing multiple Block instances (explained earlier). These are the core processing units of the transformer.
|
143 |
+
#ln_f: Final layer normalization layer (nn.LayerNorm) applied to the output of the transformer blocks.
|
144 |
+
|
145 |
+
self.transformer = nn.ModuleDict(dict(
|
146 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
147 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
148 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
149 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
150 |
+
))
|
151 |
+
|
152 |
+
|
153 |
+
#Creates the language modeling head (lm_head), a linear layer that projects the final hidden state from the
|
154 |
+
#transformer to the vocabulary size, predicting the next word in the sequence.
|
155 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
156 |
+
|
157 |
+
# weight sharing Implements weight sharing between the word token embedding layer (wte)
|
158 |
+
#and the language modeling head (lm_head). This reduces the number of parameters and encourages
|
159 |
+
#the model to learn a meaningful representation for words that can be used for both embedding and prediction.
|
160 |
+
self.transformer.wte.weight = self.lm_head.weight
|
161 |
+
|
162 |
+
# weight initialization
|
163 |
+
#Initializes the weights of the model using a custom function (_init_weights).
|
164 |
+
self.apply(self._init_weights)
|
165 |
+
|
166 |
+
def _init_weights(self, module):
|
167 |
+
if isinstance(module, nn.Linear):
|
168 |
+
std = 0.02
|
169 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
170 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
171 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
172 |
+
if module.bias is not None:
|
173 |
+
torch.nn.init.zeros_(module.bias)
|
174 |
+
elif isinstance(module, nn.Embedding):
|
175 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
def forward(self, idx, targets=None):
|
180 |
+
# idx is of shape (B, T)
|
181 |
+
B, T = idx.size()
|
182 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
183 |
+
# forward the token and posisition embeddings
|
184 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
185 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
186 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
187 |
+
x = tok_emb + pos_emb
|
188 |
+
# forward the blocks of the transformer
|
189 |
+
for block in self.transformer.h:
|
190 |
+
x = block(x)
|
191 |
+
# forward the final layernorm and the classifier
|
192 |
+
x = self.transformer.ln_f(x)
|
193 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
194 |
+
loss = None
|
195 |
+
if targets is not None:
|
196 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
197 |
+
return logits, loss
|
198 |
+
|
199 |
+
@classmethod
|
200 |
+
def from_pretrained(cls, model_type):
|
201 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
202 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
203 |
+
from transformers import GPT2LMHeadModel
|
204 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
205 |
+
|
206 |
+
# n_layer, n_head and n_embd are determined from model_type
|
207 |
+
config_args = {
|
208 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
209 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
210 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
211 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
212 |
+
}[model_type]
|
213 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
214 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
215 |
+
# create a from-scratch initialized minGPT model
|
216 |
+
config = GPTConfig(**config_args)
|
217 |
+
model = GPT(config)
|
218 |
+
sd = model.state_dict()
|
219 |
+
sd_keys = sd.keys()
|
220 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
221 |
+
|
222 |
+
# init a huggingface/transformers model
|
223 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
224 |
+
sd_hf = model_hf.state_dict()
|
225 |
+
|
226 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
227 |
+
sd_keys_hf = sd_hf.keys()
|
228 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
229 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
230 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
231 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
232 |
+
# this means that we have to transpose these weights when we import them
|
233 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
234 |
+
for k in sd_keys_hf:
|
235 |
+
if any(k.endswith(w) for w in transposed):
|
236 |
+
# special treatment for the Conv1D weights we need to transpose
|
237 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
238 |
+
with torch.no_grad():
|
239 |
+
sd[k].copy_(sd_hf[k].t())
|
240 |
+
else:
|
241 |
+
# vanilla copy over the other parameters
|
242 |
+
assert sd_hf[k].shape == sd[k].shape
|
243 |
+
with torch.no_grad():
|
244 |
+
sd[k].copy_(sd_hf[k])
|
245 |
+
|
246 |
+
return model
|
247 |
+
|
248 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
249 |
+
# start with all of the candidate parameters (that require grad)
|
250 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
251 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
252 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
253 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
254 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
255 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
256 |
+
optim_groups = [
|
257 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
258 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
259 |
+
]
|
260 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
261 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
262 |
+
|
263 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
264 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
265 |
+
# Create AdamW optimizer and use the fused version if it is available
|
266 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
267 |
+
use_fused = fused_available and device_type == "cuda"
|
268 |
+
|
269 |
+
print(f"using fused AdamW: {use_fused}")
|
270 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
271 |
+
return optimizer
|
272 |
+
|
273 |
+
# model = GPT.from_pretrained('gpt2')
|
274 |
+
|
275 |
+
device = 'cpu'
|
276 |
+
if torch.cuda.is_available():
|
277 |
+
device = 'cuda'
|
278 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
279 |
+
device = "mps"
|
280 |
+
print(f"using device: {device}")
|
281 |
+
|
282 |
+
# SEED
|
283 |
+
torch.manual_seed(1337)
|
284 |
+
if torch.cuda.is_available():
|
285 |
+
torch.cuda.manual_seed(1337)
|
286 |
+
|
287 |
+
# STOP
|
288 |
+
# num_return_sequences = 5
|
289 |
+
# max_length = 30
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
import tiktoken
|
294 |
+
|
295 |
+
class DataLoaderLite:
|
296 |
+
def __init__(self, B, T):
|
297 |
+
self.B = B
|
298 |
+
self.T = T
|
299 |
+
|
300 |
+
# at init load tokens from disk and store them in memory
|
301 |
+
with open('input.txt', 'r') as f:
|
302 |
+
text = f.read()
|
303 |
+
enc = tiktoken.get_encoding('gpt2')
|
304 |
+
tokens = enc.encode(text)
|
305 |
+
self.tokens = torch.tensor(tokens)
|
306 |
+
print(f'loaded {len(self.tokens)} tokens')
|
307 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
308 |
+
|
309 |
+
# state
|
310 |
+
self.current_position = 0
|
311 |
+
|
312 |
+
def next_batch(self):
|
313 |
+
B, T = self.B, self.T
|
314 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
315 |
+
x = (buf[:-1]).view(B, T) # inputs
|
316 |
+
y = (buf[1:]).view(B, T) # targets
|
317 |
+
# advance the position in the tensor
|
318 |
+
self.current_position += B*T
|
319 |
+
# if loading the next batch would be out of bounds, reset
|
320 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
321 |
+
self.current_position = 0
|
322 |
+
return x, y
|
323 |
+
|
324 |
+
# CHANGES IN CURRENT CODE
|
325 |
+
torch.set_float32_matmul_precision('high')
|
326 |
+
model = GPT(GPTConfig())
|
327 |
+
model.to(device)
|
328 |
+
# model = torch.compile(model)
|
329 |
+
|
330 |
+
# CODE UPDATE HERE
|
331 |
+
max_lr = 6e-4
|
332 |
+
min_lr = max_lr * 0.1
|
333 |
+
# warmup_steps = 100
|
334 |
+
# # max_steps = 50
|
335 |
+
|
336 |
+
def get_lr(it,warmup_steps, max_steps):
|
337 |
+
if it < warmup_steps:
|
338 |
+
return max_lr * (it + 1) / warmup_steps
|
339 |
+
if it > max_steps:
|
340 |
+
return min_lr
|
341 |
+
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
342 |
+
assert 0 <= decay_ratio <=1
|
343 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
344 |
+
return min_lr + coeff * (max_lr - min_lr)
|
345 |
+
|
346 |
+
|
347 |
+
# NEW CODE
|
348 |
+
import time
|
349 |
+
train_loader = DataLoaderLite(B = 8, T = 512)
|
350 |
+
|
351 |
+
# train_loader = DataLoaderLite(B = B, T = T)
|
352 |
+
x, y = train_loader.next_batch()
|
353 |
+
x.shape, y.shape
|
354 |
+
|
355 |
+
def run_train (max_steps = 50 ,warmup_steps = 100, PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):
|
356 |
+
# optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
|
357 |
+
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
|
358 |
+
for step in range(max_steps):
|
359 |
+
t0 = time.time()
|
360 |
+
x, y = train_loader.next_batch()
|
361 |
+
x, y = x.to(device), y.to(device)
|
362 |
+
optimizer.zero_grad()
|
363 |
+
# NEW CODE ADDED HERE
|
364 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
365 |
+
logits, loss = model(x, y)
|
366 |
+
loss.backward()
|
367 |
+
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
|
368 |
+
# NEW CODE
|
369 |
+
lr = get_lr(step, max_steps = 50 ,warmup_steps = 100)
|
370 |
+
for param_group in optimizer.param_groups:
|
371 |
+
param_group['lr'] = lr
|
372 |
+
|
373 |
+
optimizer.step()
|
374 |
+
torch.cuda.synchronize()
|
375 |
+
t1 = time.time()
|
376 |
+
dt = (t1 - t0) * 1000
|
377 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
378 |
+
print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
|
379 |
+
print(loss)
|
380 |
+
torch.save(model.state_dict(), PATH)
|
381 |
+
return model
|
382 |
+
|
383 |
+
def load_fromsaved(PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):
|
384 |
+
|
385 |
+
# Create a new GPT model instance
|
386 |
+
model = GPT(GPTConfig())
|
387 |
+
model.to(device)
|
388 |
+
|
389 |
+
# Load the saved weights into the model
|
390 |
+
model.load_state_dict(torch.load(PATH))
|
391 |
+
|
392 |
+
|
393 |
+
# Print confirmation message
|
394 |
+
print("Loaded model weights from:", PATH)
|
395 |
+
model.to(device)
|
396 |
+
|
397 |
+
return model
|
398 |
+
|
399 |
+
|
400 |
+
def gen_text(model,start_tokens, max_length=100, num_return_sequences=10 ):
|
401 |
+
"""
|
402 |
+
Generates text using the loaded GPT model.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
model: The GPT model to use for generation.
|
406 |
+
start_tokens (optional): A list of token IDs to use as the starting prompt.
|
407 |
+
max_length: The maximum length of the generated text.
|
408 |
+
num_return_sequences: The number of text sequences to generate.
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
None
|
412 |
+
"""
|
413 |
+
decoded_texts = ''
|
414 |
+
enc = tiktoken.get_encoding('gpt2')
|
415 |
+
tokens = enc.encode(start_tokens)
|
416 |
+
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
|
417 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
|
418 |
+
x = tokens.to(device)
|
419 |
+
|
420 |
+
# Set random seeds for consistent generation across runs
|
421 |
+
torch.manual_seed(42)
|
422 |
+
torch.cuda.manual_seed(42)
|
423 |
+
generated_text = ""
|
424 |
+
while x.size(1) < max_length:
|
425 |
+
# forward the model to get the logits
|
426 |
+
with torch.no_grad():
|
427 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
428 |
+
# take the logits at the last position
|
429 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
430 |
+
# get the probabilities
|
431 |
+
probs = F.softmax(logits, dim=-1)
|
432 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
433 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
434 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
435 |
+
# select a token from the top-k probabilities
|
436 |
+
# note: multinomial does not demand the input to sum to 1
|
437 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
438 |
+
# gather the corresponding indices
|
439 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
440 |
+
# append to the sequence
|
441 |
+
x = torch.cat((x, xcol), dim=1)
|
442 |
+
|
443 |
+
# print the generated text
|
444 |
+
for i in range(num_return_sequences):
|
445 |
+
tokens = x[i, :max_length].tolist()
|
446 |
+
decoded = enc.decode(tokens)
|
447 |
+
print(">", decoded)
|
448 |
+
generated_text += decoded
|
449 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|