File size: 24,524 Bytes
40160d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c2e39
 
40160d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c2e39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import gradio as gr
import os
import json
import threading
from pathlib import Path
from moviepy.editor import VideoFileClip
import hashlib
import random
import string
from PIL import Image

PHYSICAL_LAWS = [
    "Violation of Newton's Law: Objects move without any external force.",
    "Violation of the Law of Conservation of Mass or Solid Constitutive Law: Objects deform or distort irregularly.",
    "Violation of Fluid Constitutive Law: Liquids flow in an unnatural or irregular manner.",
    "Violation of Non-physical Penetration: Objects unnaturally pass through each other.",
    "Violation of Gravity: Objects behave inconsistently with gravity, such as floating in the air.",
    "No violation!"
]

# List of commonsense violations
COMMON_SENSE = [
    "Poor Aesthetics: Visually unappealing or low-quality content.",
    "Temporal Inconsistency: Flickering, choppiness, or sudden appearance/disappearance of irrelevant objects.",
    "No violation!"
]

# Example images for physical law violations
EXAMPLE_IMAGES = {
    "newtons_law": "test_images/law_violation1.jpg",
    "mass_conservation": "test_images/law_violation2.jpg",
    "fluid.": "test_images/law_violation3.jpg",
    "penetration": "test_images/law_violation4.jpg",
    "gravity": "test_images/law_violation5.jpg"
}

def string_to_md5(input_string, max_digits=12):
    return hashlib.md5(input_string.encode()).hexdigest()[:max_digits]

def generate_random_id(length=6):
    return ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))

class VideoAnnotator:
    def __init__(self, videos, annotation_base_dir, max_resolution=(640, 480)):
        self.annotation_base_dir = Path(annotation_base_dir)
        self.max_resolution = max_resolution
        self.videos = videos
        self.current_index = 0
        self.file_locks = {}
        self.current_labeler = None
        self.current_labeler_file = None
    
    def get_annotation_file_path(self, labeler_email):
        md5_email = string_to_md5(labeler_email, max_digits=12)
        # random_id = generate_random_id()
        # file_name = f"md5-{md5_email}.{random_id}.json"
        file_name = f"md5-{md5_email}.json"
        return self.annotation_base_dir / file_name

    def load_annotations(self, labeler_email):
        file_path = self.get_annotation_file_path(labeler_email)
        if file_path.exists():
            with open(file_path, 'r') as f:
                return json.load(f)
        return {}

    def save_annotations(self, labeler_email, annotations):
        file_path = self.get_annotation_file_path(labeler_email)
        self.annotation_base_dir.mkdir(parents=True, exist_ok=True)
        
        if file_path not in self.file_locks:
            self.file_locks[file_path] = threading.Lock()
        
        with self.file_locks[file_path]:
            with open(file_path, 'w') as f:
                json.dump(annotations, f, indent=2)

    def get_current_video(self):
        if self.videos:
            video_path = self.videos[self.current_index]
            resized_path = self.resize_video_if_needed(video_path)
            return str(resized_path.resolve())
        return None

    def resize_video_if_needed(self, video_path):
        from moviepy.video.io.ffmpeg_writer import ffmpeg_write_video
        clip = VideoFileClip(str(video_path))
        width, height = clip.size

        if width > self.max_resolution[0] or height > self.max_resolution[1]:
            resized_clip = clip.resize(height=self.max_resolution[1])
            cleaned_name = video_path.name.replace(" ", "_")
            resized_path = video_path.with_name(f"resized_{cleaned_name}")
            fps = clip.fps if clip.fps else 8.0
            ffmpeg_write_video(resized_clip, str(resized_path), fps, codec="libx264")
            return resized_path
        return video_path

    def update_annotation(self, video_name, labeler_email, instruction_check, law_annotations, commonsense):
        video_name = postprocess_name_for_gradio(video_name)
        annotations = self.load_annotations(labeler_email)
        if instruction_check and video_name not in annotations:
            annotations[video_name] = {
                "labeler": labeler_email,
                "law_details": law_annotations,
                "commonsense": commonsense,
                "instruction": instruction_check
            }
            self.save_annotations(labeler_email, annotations)

    def next_video(self):
        if self.videos:
            self.current_index = min(self.current_index + 1, len(self.videos) - 1)
        return self.get_current_video()

    def prev_video(self):
        if self.videos:
            self.current_index = max(self.current_index - 1, 0)
        return self.get_current_video()

    def jump_to_video(self, index):
        if self.videos:
            self.current_index = max(0, min(index, len(self.videos) - 1))
        return self.get_current_video()

    def set_current_labeler(self, labeler_email):
        self.current_labeler = labeler_email
        self.current_labeler_file = self.get_annotation_file_path(labeler_email)

def postprocess_name_for_gradio(name):
    return name.replace("–","").replace("+","").replace("-","").replace("t2v","").replace("(", "").replace(")","").replace(",","").replace("_","").replace(".","")

def get_cur_data(instruction_data, video_name):
    video_name = postprocess_name_for_gradio(video_name)
    if "resized_" in video_name:
        clean_name = video_name.replace("resized_", "")
        clean_name = "_".join(clean_name.split("_")[2:]) 
    else:
        clean_name = video_name
    # print(clean_name, instruction_data.keys())
    for k in instruction_data.keys():
        if k in clean_name:
            real_name = k
    cur_data = instruction_data[real_name]
    return cur_data

def create_interface(instruction_data, videos, annotation_base_dir):
    annotator = VideoAnnotator(videos, annotation_base_dir)

    def update_video():
        video_path = annotator.get_current_video()
        if video_path is None:
            return (None, annotator.current_labeler or "", "[system] Video not in benchmark", "[system] Video not in benchmark", *[False for _ in PHYSICAL_LAWS], *[False for _ in COMMON_SENSE])
        video_name = Path(video_path).name
        cur_data = get_cur_data(instruction_data, video_name)
        current_annotations = {}
        if annotator.current_labeler:
            annotations = annotator.load_annotations(annotator.current_labeler)
            current_annotations = annotations.get(
                postprocess_name_for_gradio(video_name),
                {"labeler": annotator.current_labeler, "law_details": {law: False for law in PHYSICAL_LAWS}, "commonsense": {cs: False for cs in COMMON_SENSE}, "instruction": None}
            )
        else:
            current_annotations = {"labeler": "", "law_details": {law: False for law in PHYSICAL_LAWS}, "commonsense": {cs: False for cs in COMMON_SENSE},"instruction": None}

        first_frame = cur_data["text_first_frame"]
        num_annotations = str(len(annotations)) if 'annotations' in locals() else "0"
        text_instruction = cur_data["text_instruction"]
        
        # Flatten the outputs
        outputs = [
            video_path,
            current_annotations["labeler"] or "",
            num_annotations,
            current_annotations["instruction"],
            text_instruction
        ]
        # Add individual law checkbox values
        outputs.extend([current_annotations["law_details"].get(law, False) for law in PHYSICAL_LAWS])
        # Add individual commonsense checkbox values
        outputs.extend([current_annotations["commonsense"].get(cs, False) for cs in COMMON_SENSE])
        return outputs


    def save_current_annotation(video_path, labeler_email, instruction_check, law_values, commonsense_values, skipped: bool=False):
        if not skipped:
            if video_path is None:
                return "No video loaded to save annotations."
            if not labeler_email:
                return "Please enter a valid labeler email before saving annotations."
            video_name = Path(video_path).name
            law_annotations = {law: bool(value) for law, value in zip(PHYSICAL_LAWS, law_values)}
            commonsense_annotations = {cs: bool(value) for cs, value in zip(COMMON_SENSE, commonsense_values)}
            annotator.set_current_labeler(labeler_email)
            annotator.update_annotation(video_name, labeler_email, instruction_check, law_annotations, commonsense_annotations)
            return f"Annotation saved successfully for {labeler_email}!"
        else:
            video_name = Path(video_path).name
            law_annotations = {law: bool(value) for law, value in zip(PHYSICAL_LAWS, law_values)}
            commonsense_annotations = {cs: bool(value) for cs, value in zip(COMMON_SENSE, commonsense_values)}
            annotator.set_current_labeler(labeler_email)
            annotator.update_annotation(video_name, labeler_email, instruction_check, law_annotations, commonsense_annotations)
            return f"Annotation saved successfully for {labeler_email}!"
    

    def load_anns_callback(labeler_email):
        """
        Load annotations for the given labeler email and jump to the next unlabeled video.
        Returns the updated interface state.
        """
        if not labeler_email:
            return update_video()
            
        # Set the current labeler
        annotator.set_current_labeler(labeler_email)
        
        # Load existing annotations
        annotations = annotator.load_annotations(labeler_email)
        
        # Find the first video that hasn't been annotated
        next_unannotated_index = None
        for i, video in enumerate(annotator.videos):
            video_name = postprocess_name_for_gradio("resized_" + Path(video).name)
            if video_name not in annotations:
                next_unannotated_index = i
                break
        
        # If we found an unannotated video, jump to it
        if next_unannotated_index is not None:
            annotator.jump_to_video(next_unannotated_index)
            video_path = annotator.get_current_video()
            video_name = Path(video_path).name
            cur_data = get_cur_data(instruction_data, video_name)
            
            # Prepare default state for the new video
            return [
                video_path,                    # video
                labeler_email,                 # labeler
                str(len(annotations)),         # num_annotations
                None,                          # instruction_check (default value)
                cur_data["text_instruction"],  # text_instruction
                *[False for _ in PHYSICAL_LAWS],      # law checkboxes
                *[False for _ in COMMON_SENSE]        # commonsense checkboxes
            ]
        else:
            # If all videos are annotated, stay at current video but update the interface
            current_video = annotator.get_current_video()
            if current_video:
                video_name = Path(current_video).name
                current_annotations = annotations.get(
                    postprocess_name_for_gradio(video_name),
                    {
                        "labeler": labeler_email,
                        "law_details": {law: False for law in PHYSICAL_LAWS},
                        "commonsense": {cs: False for cs in COMMON_SENSE},
                        "instruction": "3"
                    }
                )
                cur_data = get_cur_data(instruction_data, video_name)
                
                return [
                    current_video,
                    labeler_email,
                    str(len(annotations)),
                    current_annotations["instruction"],
                    cur_data["text_instruction"],
                    *[current_annotations["law_details"].get(law, False) for law in PHYSICAL_LAWS],
                    *[current_annotations["commonsense"].get(cs, False) for cs in COMMON_SENSE]
                ]
            else:
                # Fallback for empty video list
                return [
                    None,
                    labeler_email,
                    "0",
                    None,
                    "[system] No videos available",
                    *[False for _ in PHYSICAL_LAWS],
                    *[False for _ in COMMON_SENSE]
                ]
    
    def check_inputs(labeler_email, instruction_check):
        """Helper function to check input validity"""
        if not labeler_email:
            return False, "Please enter your email before proceeding."
        if not instruction_check:
            return False, "Please select whether the video follows the instruction before proceeding."
        return True, ""
    
    def confirm_callback(video_path, labeler_email, instruction_check, *checkbox_values):
        
        pass
    
    def skip_callback(video_path, labeler_email, instruction_check, *checkbox_values):
        ## save annotations with a flag skipped
        num_laws = len(PHYSICAL_LAWS)
        law_values = checkbox_values[:num_laws]
        commonsense_values = checkbox_values[num_laws:]
        breakpoint()
        save_current_annotation(video_path, labeler_email, instruction_check, law_values, commonsense_values, skipped=True)
        annotator.next_video()
        return update_video()
    
    def next_video_callback(video_path, labeler_email, instruction_check, *checkbox_values):
        breakpoint()
        # First check inputs
        is_valid, message = check_inputs(labeler_email, instruction_check)
        if not is_valid:
            # Return current state with error message
            gr.Warning(message)
            return update_video()
        # Split checkbox values into law and commonsense values
        num_laws = len(PHYSICAL_LAWS)
        law_values = checkbox_values[:num_laws]
        commonsense_values = checkbox_values[num_laws:]
        
        save_current_annotation(video_path, labeler_email, instruction_check, law_values, commonsense_values)
        annotator.next_video()
        return update_video()

    def prev_video_callback(video_path, labeler_email, instruction_check, *checkbox_values):
        # First check inputs
        is_valid, message = check_inputs(labeler_email, instruction_check)
        if not is_valid:
            # Return current state with error message
            gr.Warning(message)
            return update_video()
        # Split checkbox values into law and commonsense values
        num_laws = len(PHYSICAL_LAWS)
        law_values = checkbox_values[:num_laws]
        commonsense_values = checkbox_values[num_laws:]
        
        save_current_annotation(video_path, labeler_email, instruction_check, law_values, commonsense_values)
        annotator.prev_video()
        return update_video()

    with gr.Blocks() as interface:
        # gr.Markdown("# Video Annotation Interface")
        
        with gr.Row():
            with gr.Column(scale=1):
                video = gr.Video(label="Current Video", format="mp4", height=450, width=800)
                with gr.Row():
                    with gr.Column(scale=2):
                        labeler = gr.Textbox(
                            label="Labeler ID (your email)",
                            placeholder="Enter your email",
                            interactive=True,
                        )
                    with gr.Column(scale=1):
                        num_annotations = gr.Textbox(
                            label="Annotations Count",
                            placeholder="0",
                            interactive=False,
                        )
                text_instruction = gr.Textbox(label="Text prompt", interactive=False)
                instruction_check = gr.Radio(
                    label="Task1: Does this video follow the instruction?",
                    choices=[
                        "0: Not at all!!!",
                        "1: Correct object, wrong motion (or vice versa).",
                        "2: Follow instruction, fail task.",
                        "3: Follow instruction, complete task."
                    ],
                    type="value",
                    value="3"
                )
                with gr.Row():
                    with gr.Column(scale=1):
                        skip_btn = gr.Button("Skip! Video Corrupted")
                    with gr.Column(scale=1):
                        confirm_btn = gr.Button("Confirm!")
                with gr.Row():
                    with gr.Column(scale=1):
                        prev_btn = gr.Button("Previous Video")
                    with gr.Column(scale=1):
                        next_btn = gr.Button("Next Video")
                load_btn = gr.Button("Load Annotations")
            
            with gr.Column(scale=1):
                gr.Markdown("Task2: [Based on your first impression] Select the major <span style='color: blue;'>commonsense violations</span> in the video: <span style='color: red;'>[multiple (0-2) choices]</span>")
                commonsense_checkboxes = []
                for cs in COMMON_SENSE:
                    commonsense_checkboxes.append(gr.Checkbox(label=cs))
                
                gr.Markdown("Task3: Please select all physics laws the video <span style='color: blue;'>violates</span>: <span style='color: red;'>[multiple (0-5) choices]</span>")
                law_checkboxes = []
                for i, law in enumerate(PHYSICAL_LAWS):
                    checkbox = gr.Checkbox(label=law, interactive=True)
                    law_checkboxes.append(checkbox)
                    # if i < len(PHYSICAL_LAWS) - 1:
                        # image_path = os.path.join(os.path.abspath(__file__).rsplit("/", 1)[0], list(EXAMPLE_IMAGES.values())[i])
                    if i != len(PHYSICAL_LAWS) - 1:
                        image_path = list(EXAMPLE_IMAGES.values())[i]
                        
                        image = Image.open(image_path).convert("RGB")
                        gr.Image(value=image, label=f"Example {i+1}", show_label=True, height=68, width=700)

        # Create a flat list of all inputs
        all_inputs = [video, labeler, instruction_check] + law_checkboxes + commonsense_checkboxes
        # Create a flat list of all outputs
        all_outputs = [video, labeler, num_annotations, instruction_check, text_instruction] + law_checkboxes + commonsense_checkboxes

        # Set up event handlers with flattened inputs and outputs
        skip_btn.click(
            skip_callback,
            inputs=all_inputs,
            outputs=all_outputs
        )
        
        load_btn.click(
            load_anns_callback,
            inputs=[labeler],
            outputs=all_outputs
        )
        
        next_btn.click(
            next_video_callback,
            inputs=all_inputs,
            outputs=all_outputs
        )
        
        prev_btn.click(
            prev_video_callback,
            inputs=all_inputs,
            outputs=all_outputs
        )
        
        interface.load(
            fn=update_video,
            inputs=None,
            outputs=all_outputs
        )

    return interface

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Annotation")
    parser.add_argument("--domain", type=str, default="robotics", help="")
    parser.add_argument("--src", type=str, default="CogVideo-T2V", help="")

    # Parse the arguments
    args = parser.parse_args()
    
    domains = ["robotics", "humans", "general", "av", "game"]
    src = ["CogVideo-I2V", "CogVideo-T2V", "Open-Sora-I2V", "Open-Sora-T2V", "Pandora", "TurboT2V", "Open-Sora-Plan-I2V", "Open-Sora-Plan-T2V"]

    assert args.domain in domains, f"{args.domain} not in available domain."
    assert args.src in src, f"{args.src} not in available model src."

    instruction_base_path = "domains"
    src_video_map = {
        "CogVideo-I2V": "/home/yunhaof/workspace/datasets/outputs_v2",
        "CogVideo-T2V": "/home/yunhaof/workspace/datasets/outputs_v2",
        "Pandora": "/lustre/fsw/portfolios/nvr/users/dachengl/VILA-EWM/outputs",
        "Open-Sora-I2V": "/lustre/fsw/portfolios/nvr/users/dachengl/Open-Sora/outputs", 
        "Open-Sora-T2V": "/lustre/fsw/portfolios/nvr/users/dachengl/Open-Sora/outputs",
        "TurboT2V": "",
        "Open-Sora-Plan-I2V": "/home/yunhaof/workspace/projects/Open-Sora-Plan/ewm_benchmark/gradio_videos",
        "Open-Sora-Plan-T2V": "/home/yunhaof/workspace/projects/Open-Sora-Plan/ewm_benchmark/gradio_videos"
    }

    # Adhoc solution to naming mismatch
    domain_name_map = {
        "humans": "humans",
        "game": "game",
        "general": "general",
        "av": "av",
        "robotics": "robotics"
    }
    cur_domain = domain_name_map[args.domain]

    # video_folder = "/lustre/fsw/portfolios/nvr/users/dachengl/CogVideo/outputs"
    video_folder = Path(src_video_map[args.src])
    # print("Processing the 100 videos for the current annotation.")
    videos = []
    if args.src == "CogVideo-I2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" not in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "CogVideo-T2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "Pandora":
        for v in video_folder.glob("*.mp4"):
            if "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "Open-Sora-I2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" not in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "Open-Sora-T2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "Open-Sora-Plan-I2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" not in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "Open-Sora-Plan-T2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)
    elif args.src == "TurboT2V":
        for v in video_folder.glob("*.mp4"):
            if "t2v" in v.stem and "resized_" not in v.stem and f"{cur_domain}_" in v.stem:
                videos.append(v)

    videos = sorted(videos)
    print(f"Number of videos: {len(videos)}")

    instruction_file = f"domains/{args.domain}/dataset_v2/instruction_ewm.json"
    annotation_base = "annotations"
    os.makedirs(annotation_base, exist_ok=True)
    annotation_dir = os.path.join(annotation_base, f"{args.domain}_{args.src}")

    instruction_data = {}
    with open(instruction_file, "r") as f:
        instructions = json.load(f)
        for instruction in instructions:
            file_name = os.path.basename(instruction["video_path"])
            # gradio will eliminate -
            file_name = postprocess_name_for_gradio(file_name)#.replace("-", "").replace("_t2v","")
            instruction_data[file_name] = instruction

    # perform a check that these videos will appear on the instruction, with or without the resized_ 
    for _video in videos:
        try:
            _ = get_cur_data(instruction_data, postprocess_name_for_gradio(Path(_video).name))#.replace("-", "").replace("_t2v",""))
        except:
            print(f"parsing name {_video} fails, you may want to look at the name in instruction_ewm.json")
            assert False
        try:
            _ = get_cur_data(instruction_data, "resized_" + postprocess_name_for_gradio(Path(_video).name))# .replace("-", "").replace("_t2v",""))
        except:
            print(f"parsing name resized_{_video} fails, you may want to look at the name in instruction_ewm.json")
            assert False
    
    iface = create_interface(instruction_data, videos, annotation_dir)
    iface.launch(share=True, allowed_paths=[src_video_map[args.src]])