File size: 1,163 Bytes
fbfd701
 
94d4a5f
7d9da54
a09ade1
a8611fa
 
d10eea6
 
7d9da54
8cc772c
 
2f9ce64
bb0b163
 
 
 
 
004666a
 
fbfd701
0f5b821
004666a
77056bd
7d9da54
6c48db2
 
ac05659
7d9da54
22cfca3
 
 
 
 
a8611fa
 
 
 
 
 
ae02ad4
d10eea6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from datasets import load_dataset
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi, list_models
import os
import datasets
from datasets import Dataset, DatasetDict
from huggingface_hub import HfFileSystem
fs = HfFileSystem()

# from datasets import Dataset
# Dataset.cleanup_cache_files

DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/visual_cs"
DATA_FILENAME = "final_data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)


st.write('dataset')
dataset = load_dataset("Seetha/visual_cs")
df = pd.DataFrame.from_dict(dataset["train"])

st.write('dataset-retrieved')
st.write(df)

HF_TOKEN = os.environ.get("HF_TOKEN")
st.write("is none?", HF_TOKEN is None)
HfApi().delete_file(path_in_repo = DATA_FILENAME ,repo_id = 'Seetha/visual_cs',token= HF_TOKEN,repo_type='dataset')
st.write('file-deleted')

st.write('Read the CSV file')
data_stakeholdercount = pd.read_csv('final_data.csv')
st.write(data_stakeholdercount)

tds = Dataset.from_pandas(data_stakeholdercount)
ds = DatasetDict()

ds['train'] = tds

st.write(ds)
ds.push_to_hub('Seetha/visual_cs',token= HF_TOKEN)
df.to_csv("hf://datasets/Seetha/visual_cs/test.csv")