File size: 1,377 Bytes
fbfd701
 
94d4a5f
7d9da54
a09ade1
a8611fa
 
d10eea6
4ce225a
7d9da54
8cc772c
 
2f9ce64
bb0b163
 
 
 
 
004666a
d3e7107
 
0f5b821
d3e7107
 
7d9da54
623e47c
 
4ce225a
 
ffc8fec
 
22cfca3
 
 
 
 
ffc8fec
 
a8611fa
ffc8fec
a8611fa
ffc8fec
 
226af91
aa9abe7
 
 
04f4781
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from datasets import load_dataset
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi, list_models
import os
import datasets
from datasets import Dataset, DatasetDict
from huggingface_hub import HfFileSystem


# from datasets import Dataset
# Dataset.cleanup_cache_files

DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/visual_cs"
DATA_FILENAME = "final_data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)


st.write('dataset')
# dataset = load_dataset("Seetha/visual_cs")
# df = pd.DataFrame.from_dict(dataset["train"])

# st.write('dataset-retrieved')
# st.write(df)

HF_TOKEN = os.environ.get("HF_TOKEN")
st.write("is none?", HF_TOKEN is None)

fs = HfFileSystem(token=HF_TOKEN)
# HfApi().delete_file(path_in_repo = DATA_FILENAME ,repo_id = 'Seetha/visual_cs',token= HF_TOKEN,repo_type='dataset')
# st.write('file-deleted')

st.write('Read the CSV file')
data_stakeholdercount = pd.read_csv('final_data.csv')
st.write(data_stakeholdercount)

# tds = Dataset.from_pandas(data_stakeholdercount)
# ds = DatasetDict()

# ds['train'] = tds

# st.write(ds)
# ds.push_to_hub('Seetha/visual_cs',token= HF_TOKEN)
st.write(fs.ls("datasets/Seetha/visual_cs",detail=False))

with fs.open('datasets/Seetha/visual_cs/test.csv','w') as f:
    data_stakeholdercount.to_csv(f)
#data_stakeholdercount.to_csv("hf://datasets/Seetha/visual_cs/test.csv")