File size: 2,145 Bytes
e90e7ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9650f42
e90e7ba
 
 
d2082a1
e90e7ba
e98811a
e90e7ba
 
e98811a
e90e7ba
 
f648e82
e90e7ba
f648e82
e90e7ba
 
f648e82
e90e7ba
 
f648e82
e90e7ba
 
f648e82
e90e7ba
 
f648e82
e90e7ba
68d264c
6492be6
 
e98811a
d241351
 
5853ee9
d241351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e90e7ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# import urllib.request
# import streamlit as st
# import os
# from datasets import load_from_disk
# import requests
# with urllib.request.urlopen('https://huggingface.co/datasets/Seetha/Visualization') as response:
#     data = response.read()

# with open('./level2.json','r+') as fi:
#     data = fi.read()
#     st.write('before change', data)
#     fi.seek(0)
#     fi.write('Hello world!')
#     fi.truncate()
#     st.write(os.path.abspath("./level2.json"))

# with open('./level2.json','w') as dat:
#     dat.write('hello hello')
#     #st.write(data_after)

# # bin_file = open('./level2.json', 'rb')

# # # Execute the request
# # response = requests.post('https://huggingface.co/datasets/Seetha/Visualization', files={'file': bin_file})

# # # Close the file
# # bin_file.close()

# from datasets import load_dataset

# # Load the dataset
# dataset = load_dataset("Seetha/Visualization")

# # Make changes to the dataset
# # ...

# # Save the changed dataset to a file
# dataset.save_to_disk('./level.json')

# # In your Streamlit app, load the dataset from the file
# dataset = load_dataset('json', data_files='./level.json')

import streamlit as st
import urllib # the lib that handles the url stuff
from PyPDF2 import PdfReader
text_list = []

#target_url = 'https://huggingface.co/datasets/Seetha/Visualization/raw/main/AFLAC_Wyatt_notag.pdf'
file_path = "AFLAC_Wyatt_notag.pdf"
if st.button('PDF1'):
    with open(file_path,"rb") as f:
        base64_pdf = base64.b64encode(f.read()).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)
    # data = urllib.request.urlopen(target_url)
    # for line in data.read():
    #     st.write(line)
    # if data is not None:
    #     reader = PdfReader(data)
    #     for page in reader.pages:
    #         text = page.extract_text()
    #         text_list.append(text)
    #         st.write(text_list)
    # else:
    #      st.error("Please upload your own PDF to be analyzed")
    #      st.stop()
else:
    st.write('Goodbye')