Spaces:
Sleeping
Sleeping
from fastai import * | |
from fastcore.all import * | |
from fastai.vision.all import * | |
import pandas as pd | |
import re | |
import gradio as gr | |
def get_x(data_set): | |
return Path(data_set['image_path']) | |
def get_y(data_set): | |
return data_set['bf_est'] | |
def new_splitter(df): | |
# Get the unique values in the 'id' column | |
unique_ids = df['id'].unique() | |
# Shuffle the unique values | |
np.random.seed(42) | |
np.random.shuffle(unique_ids) | |
# Calculate the number of unique values to be included in the first dataframe | |
num_unique_in_test = int(np.ceil(len(unique_ids) * 0.8)) | |
# Get the first 'num_unique_in_df1' unique values | |
test_ids = unique_ids[:num_unique_in_test] | |
# Get the rows of the original dataframe that contain the 'df1_ids' | |
test = df.index[df['id'].isin(test_ids)].tolist() | |
# Get the rest of the rows from the original dataframe | |
valid = df.index[~df['id'].isin(test_ids)].tolist() | |
return test, valid | |
title = "Body Fat Predictor" | |
description = "A Body Fat Predictor trained on the subreddit \"guessmybf\"." | |
article = "for best preformence upload a front facing photo" | |
learner = load_learner("bf_model.pkl") | |
def predict_bf(img): | |
# pil_img = PILImage.create(img) | |
return round(float(learner.predict(img)[1]),2) | |
image = gr.Image(shape=(192,192)) | |
# label = gr.float() | |
intf = gr.Interface(fn =predict_bf, inputs = image, outputs = "number", title=title, description=description, article=article) | |
intf.launch(inline= False) | |
# def greet(name): | |
# return "Hello " + name + "!!" + "This is version 2!!!" | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch() |