Spaces:
Sleeping
Sleeping
primer commit
Browse files- app.py +56 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Cargar el modelo de detecci贸n de objetos de Hugging Face (DETR)
|
6 |
+
detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
7 |
+
|
8 |
+
def process_video(video_path):
|
9 |
+
"""
|
10 |
+
Procesa un video y devuelve el m谩ximo n煤mero detectado de personas, bicicletas y motos en un fotograma.
|
11 |
+
"""
|
12 |
+
cap = cv2.VideoCapture(video_path)
|
13 |
+
if not cap.isOpened():
|
14 |
+
return {"person": 0, "bicycle": 0, "motorcycle": 0}
|
15 |
+
|
16 |
+
max_counts = {"person": 0, "bicycle": 0, "motorcycle": 0}
|
17 |
+
|
18 |
+
while True:
|
19 |
+
ret, frame = cap.read()
|
20 |
+
if not ret:
|
21 |
+
break
|
22 |
+
|
23 |
+
# Convertir el frame de BGR a RGB (requerido por el modelo)
|
24 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
25 |
+
|
26 |
+
# Realizar la detecci贸n de objetos
|
27 |
+
results = detector(frame_rgb)
|
28 |
+
|
29 |
+
# Contar objetos detectados en el frame actual (usamos un umbral de confianza)
|
30 |
+
frame_counts = {"person": 0, "bicycle": 0, "motorcycle": 0}
|
31 |
+
for detection in results:
|
32 |
+
if detection["score"] < 0.7:
|
33 |
+
continue
|
34 |
+
label = detection["label"].lower()
|
35 |
+
if label in frame_counts:
|
36 |
+
frame_counts[label] += 1
|
37 |
+
|
38 |
+
# Actualizar el conteo m谩ximo si en este frame se detecta m谩s
|
39 |
+
for key in frame_counts:
|
40 |
+
if frame_counts[key] > max_counts[key]:
|
41 |
+
max_counts[key] = frame_counts[key]
|
42 |
+
|
43 |
+
cap.release()
|
44 |
+
return max_counts
|
45 |
+
|
46 |
+
# Crear la interfaz de Gradio para el Space
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=process_video,
|
49 |
+
inputs=gr.Video(label="Sube tu video"),
|
50 |
+
outputs="json",
|
51 |
+
title="Detecci贸n de Objetos en Video",
|
52 |
+
description="Carga un video y detecta cu谩ntas personas, bicicletas y motos aparecen usando modelos de Hugging Face."
|
53 |
+
)
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
opencv-python
|
3 |
+
transformers
|