Spaces:
Running
on
Zero
Running
on
Zero
array
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
-
# Cargar el modelo de detecci贸n de objetos
|
6 |
-
detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
7 |
|
8 |
def process_video(video_path):
|
9 |
"""
|
@@ -20,13 +21,16 @@ def process_video(video_path):
|
|
20 |
if not ret:
|
21 |
break
|
22 |
|
23 |
-
# Convertir el frame de BGR a RGB
|
24 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
25 |
|
|
|
|
|
|
|
26 |
# Realizar la detecci贸n de objetos
|
27 |
-
results = detector(
|
28 |
|
29 |
-
# Contar objetos detectados en el frame actual (
|
30 |
frame_counts = {"person": 0, "bicycle": 0, "motorcycle": 0}
|
31 |
for detection in results:
|
32 |
if detection["score"] < 0.7:
|
@@ -35,7 +39,7 @@ def process_video(video_path):
|
|
35 |
if label in frame_counts:
|
36 |
frame_counts[label] += 1
|
37 |
|
38 |
-
# Actualizar el conteo m谩ximo si en este frame se detecta
|
39 |
for key in frame_counts:
|
40 |
if frame_counts[key] > max_counts[key]:
|
41 |
max_counts[key] = frame_counts[key]
|
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
|
6 |
+
# Cargar el modelo de detecci贸n de objetos (usando CPU)
|
7 |
+
detector = pipeline("object-detection", model="facebook/detr-resnet-50", device=-1)
|
8 |
|
9 |
def process_video(video_path):
|
10 |
"""
|
|
|
21 |
if not ret:
|
22 |
break
|
23 |
|
24 |
+
# Convertir el frame de BGR a RGB
|
25 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
26 |
|
27 |
+
# Convertir el array de NumPy a una imagen PIL
|
28 |
+
pil_image = Image.fromarray(frame_rgb)
|
29 |
+
|
30 |
# Realizar la detecci贸n de objetos
|
31 |
+
results = detector(pil_image)
|
32 |
|
33 |
+
# Contar objetos detectados en el frame actual (con umbral de confianza)
|
34 |
frame_counts = {"person": 0, "bicycle": 0, "motorcycle": 0}
|
35 |
for detection in results:
|
36 |
if detection["score"] < 0.7:
|
|
|
39 |
if label in frame_counts:
|
40 |
frame_counts[label] += 1
|
41 |
|
42 |
+
# Actualizar el conteo m谩ximo si en este frame se detecta un mayor n煤mero
|
43 |
for key in frame_counts:
|
44 |
if frame_counts[key] > max_counts[key]:
|
45 |
max_counts[key] = frame_counts[key]
|