Spaces:
Running
on
Zero
Running
on
Zero
yolov11
Browse files- app.py +158 -80
- requirements.txt +1 -5
app.py
CHANGED
@@ -1,87 +1,165 @@
|
|
1 |
-
import cv2
|
2 |
import gradio as gr
|
|
|
3 |
from ultralytics import YOLO
|
4 |
-
|
|
|
|
|
5 |
import tempfile
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
-
|
13 |
-
y dibuja los recuadros y etiquetas en cada frame. Devuelve un .mp4 anotado.
|
14 |
"""
|
15 |
-
|
16 |
-
|
17 |
-
return
|
18 |
-
|
19 |
-
|
20 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
21 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
22 |
-
|
23 |
-
# Creamos un archivo temporal para guardar el resultado
|
24 |
-
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
25 |
-
output_path = tmp_file.name
|
26 |
-
tmp_file.close()
|
27 |
-
|
28 |
-
# Usamos un códec compatible con navegadores (H.264 / avc1)
|
29 |
-
fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
30 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
31 |
-
|
32 |
-
# Clases que nos interesan
|
33 |
-
valid_classes = ["person", "bicycle", "motorcycle"]
|
34 |
-
|
35 |
-
while True:
|
36 |
-
ret, frame = cap.read()
|
37 |
-
if not ret:
|
38 |
-
break
|
39 |
-
|
40 |
-
# Convertir BGR -> RGB para predecir con YOLO
|
41 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
from ultralytics import YOLO
|
4 |
+
import spaces
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
import tempfile
|
8 |
|
9 |
+
@spaces.GPU
|
10 |
+
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
11 |
+
if input_type == "Image":
|
12 |
+
if image is None:
|
13 |
+
width, height = 640, 480
|
14 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
15 |
+
draw = ImageDraw.Draw(blank_image)
|
16 |
+
message = "No image provided"
|
17 |
+
font = ImageFont.load_default(size=40)
|
18 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
19 |
+
text_width = bbox[2] - bbox[0]
|
20 |
+
text_height = bbox[3] - bbox[1]
|
21 |
+
text_x = (width - text_width) / 2
|
22 |
+
text_y = (height - text_height) / 2
|
23 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
24 |
+
return blank_image, None
|
25 |
+
|
26 |
+
model = YOLO(model_id)
|
27 |
+
results = model.predict(
|
28 |
+
source=image,
|
29 |
+
conf=conf_threshold,
|
30 |
+
iou=iou_threshold,
|
31 |
+
imgsz=640,
|
32 |
+
max_det=max_detection,
|
33 |
+
show_labels=True,
|
34 |
+
show_conf=True,
|
35 |
+
)
|
36 |
+
for r in results:
|
37 |
+
image_array = r.plot()
|
38 |
+
annotated_image = Image.fromarray(image_array[..., ::-1])
|
39 |
+
return annotated_image, None
|
40 |
+
|
41 |
+
elif input_type == "Video":
|
42 |
+
if video is None:
|
43 |
+
width, height = 640, 480
|
44 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
45 |
+
draw = ImageDraw.Draw(blank_image)
|
46 |
+
message = "No video provided"
|
47 |
+
font = ImageFont.load_default(size=40)
|
48 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
49 |
+
text_width = bbox[2] - bbox[0]
|
50 |
+
text_height = bbox[3] - bbox[1]
|
51 |
+
text_x = (width - text_width) / 2
|
52 |
+
text_y = (height - text_height) / 2
|
53 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
54 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
55 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
56 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
57 |
+
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
58 |
+
out.write(frame)
|
59 |
+
out.release()
|
60 |
+
return None, temp_video_file
|
61 |
+
|
62 |
+
model = YOLO(model_id)
|
63 |
+
cap = cv2.VideoCapture(video)
|
64 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
65 |
+
frames = []
|
66 |
+
while True:
|
67 |
+
ret, frame = cap.read()
|
68 |
+
if not ret:
|
69 |
+
break
|
70 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
71 |
+
results = model.predict(
|
72 |
+
source=pil_frame,
|
73 |
+
conf=conf_threshold,
|
74 |
+
iou=iou_threshold,
|
75 |
+
imgsz=640,
|
76 |
+
max_det=max_detection,
|
77 |
+
show_labels=True,
|
78 |
+
show_conf=True,
|
79 |
+
)
|
80 |
+
for r in results:
|
81 |
+
annotated_frame_array = r.plot()
|
82 |
+
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
83 |
+
frames.append(annotated_frame)
|
84 |
+
cap.release()
|
85 |
+
if len(frames) == 0:
|
86 |
+
return None, None
|
87 |
+
|
88 |
+
height_out, width_out, _ = frames[0].shape
|
89 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
90 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
91 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
92 |
+
for f in frames:
|
93 |
+
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
94 |
+
out.write(f_bgr)
|
95 |
+
out.release()
|
96 |
+
return None, temp_video_file
|
97 |
+
|
98 |
+
else:
|
99 |
+
return None, None
|
100 |
+
|
101 |
+
def update_visibility(input_type):
|
102 |
"""
|
103 |
+
Show/hide image/video input and output depending on input_type.
|
|
|
104 |
"""
|
105 |
+
if input_type == "Image":
|
106 |
+
# image, video, output_image, output_video
|
107 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
108 |
+
else:
|
109 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
112 |
+
"""
|
113 |
+
This is called by gr.Examples. We force the radio to 'Image'
|
114 |
+
and then do a standard image inference, returning both updated radio
|
115 |
+
value and the annotated image.
|
116 |
+
"""
|
117 |
+
annotated_image, _ = yolo_inference(
|
118 |
+
input_type="Image",
|
119 |
+
image=image,
|
120 |
+
video=None,
|
121 |
+
model_id=model_id,
|
122 |
+
conf_threshold=conf_threshold,
|
123 |
+
iou_threshold=iou_threshold,
|
124 |
+
max_detection=max_detection
|
125 |
+
)
|
126 |
+
return gr.update(value="Image"), annotated_image
|
127 |
+
|
128 |
+
with gr.Blocks() as app:
|
129 |
+
gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification")
|
130 |
+
gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column():
|
134 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
135 |
+
video = gr.Video(label="Video", visible=False)
|
136 |
+
input_type = gr.Radio(
|
137 |
+
choices=["Image", "Video"],
|
138 |
+
value="Image",
|
139 |
+
label="Input Type",
|
140 |
+
)
|
141 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
142 |
+
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
|
143 |
+
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
|
144 |
+
infer_button = gr.Button("Detect Objects")
|
145 |
+
with gr.Column():
|
146 |
+
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
|
147 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
148 |
+
|
149 |
+
# Toggle input/output visibility
|
150 |
+
input_type.change(
|
151 |
+
fn=update_visibility,
|
152 |
+
inputs=input_type,
|
153 |
+
outputs=[image, video, output_image, output_video],
|
154 |
+
)
|
155 |
+
|
156 |
+
# Main inference for button click
|
157 |
+
infer_button.click(
|
158 |
+
fn=yolo_inference,
|
159 |
+
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
|
160 |
+
outputs=[output_image, output_video],
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == '__main__':
|
165 |
+
app.launch()
|
requirements.txt
CHANGED
@@ -1,9 +1,5 @@
|
|
1 |
-
|
2 |
-
opencv-python
|
3 |
-
transformers
|
4 |
torch
|
5 |
-
tensorflow
|
6 |
torchvision
|
7 |
-
timm
|
8 |
ultralytics
|
9 |
Pillow
|
|
|
1 |
+
spaces
|
|
|
|
|
2 |
torch
|
|
|
3 |
torchvision
|
|
|
4 |
ultralytics
|
5 |
Pillow
|