import gradio as gr from diffusers import DiffusionPipeline model_repo_id = "runwayml/stable-diffusion-v1-5" # Replace to the model you would like to use pipe = DiffusionPipeline.from_pretrained(model_repo_id) pipe.load_lora_weights("OVAWARE/plixel-minecraft") # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt ): image = pipe( prompt=prompt ).images[0] return image css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt ], outputs=[result], ) if __name__ == "__main__": demo.launch()