Spaces:
Sleeping
Sleeping
added necesary files-1
Browse files- configs/MetaLlama3.json +31 -0
- configs/Mistral.json +31 -0
- configs/Phi.json +31 -0
- configs/Qwen.json +31 -0
- l3prune/__init__.py +2 -0
- l3prune/__pycache__/__init__.cpython-312.pyc +0 -0
- l3prune/__pycache__/l3prune.cpython-312.pyc +0 -0
- l3prune/__pycache__/llmencoder.cpython-312.pyc +0 -0
- l3prune/__pycache__/model_overrides.cpython-312.pyc +0 -0
- l3prune/dataset/E5Data.py +155 -0
- l3prune/dataset/Wiki1M.py +43 -0
- l3prune/dataset/__init__.py +2 -0
- l3prune/dataset/dataset.py +53 -0
- l3prune/dataset/utils.py +25 -0
- l3prune/l3prune.py +62 -0
- l3prune/llmencoder.py +470 -0
- l3prune/loss/HardNegativeNLLLoss.py +46 -0
- l3prune/loss/__init__.py +1 -0
- l3prune/loss/loss_utils.py +107 -0
- l3prune/loss/utils.py +9 -0
- l3prune/model_overrides.py +458 -0
configs/MetaLlama3.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 3 |
+
"pooling_mode": "weighted_mean",
|
| 4 |
+
"dataset_name": "E5",
|
| 5 |
+
"dataset_file_path": "cache/echo-data",
|
| 6 |
+
"remove_unused_columns": false,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"num_train_epochs": 3,
|
| 9 |
+
"warmup_steps": 300,
|
| 10 |
+
"per_device_train_batch_size": 64,
|
| 11 |
+
"per_device_eval_batch_size": 64,
|
| 12 |
+
"gradient_accumulation_steps": 1,
|
| 13 |
+
"do_train": true,
|
| 14 |
+
"disable_tqdm": false,
|
| 15 |
+
"max_seq_length": 512,
|
| 16 |
+
"overwrite_output_dir": true,
|
| 17 |
+
"output_dir": "output/meta-llama/Meta-Llama-3-8B-Instruct",
|
| 18 |
+
"use_adapter": true,
|
| 19 |
+
"percent_prune": [25],
|
| 20 |
+
"autoprune": "small+large",
|
| 21 |
+
"logging_steps": 50,
|
| 22 |
+
"save_steps": 200,
|
| 23 |
+
"save_total_limit": 1,
|
| 24 |
+
"save_only_model": true,
|
| 25 |
+
"stop_after_n_steps": 1000,
|
| 26 |
+
"lora_r": 16,
|
| 27 |
+
"gradient_checkpointing": true,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"attn_implementation": "flash_attention_2",
|
| 30 |
+
"seed": 42
|
| 31 |
+
}
|
configs/Mistral.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 3 |
+
"pooling_mode": "weighted_mean",
|
| 4 |
+
"dataset_name": "E5",
|
| 5 |
+
"dataset_file_path": "cache/echo-data",
|
| 6 |
+
"remove_unused_columns": false,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"num_train_epochs": 3,
|
| 9 |
+
"warmup_steps": 300,
|
| 10 |
+
"per_device_train_batch_size": 64,
|
| 11 |
+
"per_device_eval_batch_size": 64,
|
| 12 |
+
"gradient_accumulation_steps": 1,
|
| 13 |
+
"do_train": true,
|
| 14 |
+
"disable_tqdm": false,
|
| 15 |
+
"max_seq_length": 512,
|
| 16 |
+
"overwrite_output_dir": true,
|
| 17 |
+
"output_dir": "output/mistralai/Mistral-7B-Instruct-v0.2",
|
| 18 |
+
"use_adapter": true,
|
| 19 |
+
"percent_prune": [22],
|
| 20 |
+
"autoprune": "small+large",
|
| 21 |
+
"logging_steps": 50,
|
| 22 |
+
"save_steps": 200,
|
| 23 |
+
"save_total_limit": 1,
|
| 24 |
+
"save_only_model": true,
|
| 25 |
+
"stop_after_n_steps": 1000,
|
| 26 |
+
"lora_r": 16,
|
| 27 |
+
"gradient_checkpointing": true,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"attn_implementation": "flash_attention_2",
|
| 30 |
+
"seed": 42
|
| 31 |
+
}
|
configs/Phi.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 3 |
+
"pooling_mode": "weighted_mean",
|
| 4 |
+
"dataset_name": "E5",
|
| 5 |
+
"dataset_file_path": "cache/echo-data",
|
| 6 |
+
"remove_unused_columns": false,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"num_train_epochs": 3,
|
| 9 |
+
"warmup_steps": 300,
|
| 10 |
+
"per_device_train_batch_size": 64,
|
| 11 |
+
"per_device_eval_batch_size": 64,
|
| 12 |
+
"gradient_accumulation_steps": 1,
|
| 13 |
+
"do_train": true,
|
| 14 |
+
"disable_tqdm": false,
|
| 15 |
+
"max_seq_length": 512,
|
| 16 |
+
"overwrite_output_dir": true,
|
| 17 |
+
"output_dir": "output/microsoft/Phi-3-mini-4k-instruct",
|
| 18 |
+
"use_adapter": true,
|
| 19 |
+
"percent_prune": [25],
|
| 20 |
+
"autoprune": "small+large",
|
| 21 |
+
"logging_steps": 50,
|
| 22 |
+
"save_steps": 200,
|
| 23 |
+
"save_total_limit": 1,
|
| 24 |
+
"save_only_model": true,
|
| 25 |
+
"stop_after_n_steps": 1000,
|
| 26 |
+
"lora_r": 16,
|
| 27 |
+
"gradient_checkpointing": true,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"attn_implementation": "flash_attention_2",
|
| 30 |
+
"seed": 42
|
| 31 |
+
}
|
configs/Qwen.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name_or_path": "Qwen/Qwen2-7B-Instruct",
|
| 3 |
+
"pooling_mode": "weighted_mean",
|
| 4 |
+
"dataset_name": "E5",
|
| 5 |
+
"dataset_file_path": "cache/echo-data",
|
| 6 |
+
"remove_unused_columns": false,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"num_train_epochs": 3,
|
| 9 |
+
"warmup_steps": 300,
|
| 10 |
+
"per_device_train_batch_size": 64,
|
| 11 |
+
"per_device_eval_batch_size": 64,
|
| 12 |
+
"gradient_accumulation_steps": 1,
|
| 13 |
+
"do_train": true,
|
| 14 |
+
"disable_tqdm": false,
|
| 15 |
+
"max_seq_length": 512,
|
| 16 |
+
"overwrite_output_dir": true,
|
| 17 |
+
"output_dir": "output/Qwen/Qwen2-7B-Instruct",
|
| 18 |
+
"use_adapter": true,
|
| 19 |
+
"percent_prune": [25],
|
| 20 |
+
"autoprune": "small+large",
|
| 21 |
+
"logging_steps": 50,
|
| 22 |
+
"save_steps": 200,
|
| 23 |
+
"save_total_limit": 1,
|
| 24 |
+
"save_only_model": true,
|
| 25 |
+
"stop_after_n_steps": 200,
|
| 26 |
+
"lora_r": 16,
|
| 27 |
+
"gradient_checkpointing": true,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"attn_implementation": "flash_attention_2",
|
| 30 |
+
"seed": 42
|
| 31 |
+
}
|
l3prune/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .llmencoder import LLMEncoder
|
| 2 |
+
from .l3prune import l3prune
|
l3prune/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (245 Bytes). View file
|
|
|
l3prune/__pycache__/l3prune.cpython-312.pyc
ADDED
|
Binary file (4 kB). View file
|
|
|
l3prune/__pycache__/llmencoder.cpython-312.pyc
ADDED
|
Binary file (22.2 kB). View file
|
|
|
l3prune/__pycache__/model_overrides.cpython-312.pyc
ADDED
|
Binary file (13 kB). View file
|
|
|
l3prune/dataset/E5Data.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from .dataset import DataSample, TrainSample, Dataset
|
| 6 |
+
from accelerate.logging import get_logger
|
| 7 |
+
|
| 8 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 9 |
+
|
| 10 |
+
E5_EMBEDDING_PROMPTS = {
|
| 11 |
+
"allnli": [
|
| 12 |
+
"Given a premise, retrieve a hypothesis that is entailed by the premise",
|
| 13 |
+
"Retrieve semantically similar text",
|
| 14 |
+
],
|
| 15 |
+
"dureader": "Given a Chinese search query, retrieve web passages that answer the question",
|
| 16 |
+
"eli5_question_answer": "Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum",
|
| 17 |
+
"fever": "Given a claim, retrieve documents that support or refute the claim",
|
| 18 |
+
"hotpot_qa": "Given a multi-hop question, retrieve documents that can help answer the question",
|
| 19 |
+
"miracl": "Given a question, retrieve Wikipedia passages that answer the question",
|
| 20 |
+
"mrtydi": "Given a question, retrieve Wikipedia passages that answer the question",
|
| 21 |
+
"msmarco_passage": "Given a web search query, retrieve relevant passages that answer the query",
|
| 22 |
+
"msmarco_document": "Given a web search query, retrieve relevant documents that answer the query",
|
| 23 |
+
"nq": "Given a question, retrieve Wikipedia passages that answer the question",
|
| 24 |
+
"quora_duplicates": [
|
| 25 |
+
"Given a question, retrieve questions that are semantically equivalent to the given question",
|
| 26 |
+
"Find questions that have the same meaning as the input question",
|
| 27 |
+
],
|
| 28 |
+
"squad": "Retrieve Wikipedia passages that answer the question",
|
| 29 |
+
"t2ranking": "Given a Chinese search query, retrieve web passages that answer the question",
|
| 30 |
+
"trivia_qa": "Retrieve Wikipedia passages that answer the question",
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class E5Data(Dataset):
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
dataset_name: str = "E5",
|
| 38 |
+
split: str = "validation",
|
| 39 |
+
file_path: str = "cache/echo-data",
|
| 40 |
+
effective_batch_size: int = 32,
|
| 41 |
+
shuffle_individual_datasets: bool = True,
|
| 42 |
+
separator: str = "!@#$%^&*()",
|
| 43 |
+
):
|
| 44 |
+
self.dataset_name = dataset_name
|
| 45 |
+
self.split = split
|
| 46 |
+
self.effective_batch_size = effective_batch_size
|
| 47 |
+
self.shuffle_individual_datasets = shuffle_individual_datasets
|
| 48 |
+
self.separator = separator
|
| 49 |
+
|
| 50 |
+
self.data = []
|
| 51 |
+
self.load_data(file_path)
|
| 52 |
+
|
| 53 |
+
def __len__(self):
|
| 54 |
+
return len(self.data)
|
| 55 |
+
|
| 56 |
+
def load_data(self, file_path: str = None):
|
| 57 |
+
logger.info(f"Loading E5 data from {file_path}...")
|
| 58 |
+
# file path is actually a directory
|
| 59 |
+
|
| 60 |
+
data_map = {}
|
| 61 |
+
all_samples = []
|
| 62 |
+
id_ = 0
|
| 63 |
+
for dataset in E5_EMBEDDING_PROMPTS:
|
| 64 |
+
logger.info(f"Loading dataset {dataset}...")
|
| 65 |
+
if dataset not in data_map:
|
| 66 |
+
data_map[dataset] = []
|
| 67 |
+
with open(os.path.join(file_path, f"{dataset}.jsonl"), "r") as f:
|
| 68 |
+
dataset_samples = f.readlines()
|
| 69 |
+
|
| 70 |
+
dataset_samples = [json.loads(d) for d in dataset_samples]
|
| 71 |
+
|
| 72 |
+
for i, sample in enumerate(dataset_samples):
|
| 73 |
+
instruction = (
|
| 74 |
+
E5_EMBEDDING_PROMPTS[dataset]
|
| 75 |
+
if isinstance(E5_EMBEDDING_PROMPTS[dataset], str)
|
| 76 |
+
else E5_EMBEDDING_PROMPTS[dataset][i % 2]
|
| 77 |
+
)
|
| 78 |
+
query = f"{instruction}; " + self.separator + sample["query"]
|
| 79 |
+
if dataset in [
|
| 80 |
+
"allnli_split2",
|
| 81 |
+
"quora_duplicates_split1",
|
| 82 |
+
"quora_duplicates_split2",
|
| 83 |
+
]:
|
| 84 |
+
pos = (
|
| 85 |
+
f"{E5_EMBEDDING_PROMPTS[dataset]}; "
|
| 86 |
+
+ self.separator
|
| 87 |
+
+ sample["positive"]
|
| 88 |
+
)
|
| 89 |
+
neg = (
|
| 90 |
+
f"{E5_EMBEDDING_PROMPTS[dataset]}; "
|
| 91 |
+
+ self.separator
|
| 92 |
+
+ sample["negative"]
|
| 93 |
+
)
|
| 94 |
+
else:
|
| 95 |
+
pos = self.separator + sample["positive"]
|
| 96 |
+
neg = self.separator + sample["negative"]
|
| 97 |
+
|
| 98 |
+
data_map[dataset].append(id_)
|
| 99 |
+
|
| 100 |
+
all_samples.append(
|
| 101 |
+
DataSample(
|
| 102 |
+
id_=id_,
|
| 103 |
+
query=query,
|
| 104 |
+
positive=pos,
|
| 105 |
+
negative=neg,
|
| 106 |
+
task_name=dataset,
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
id_ += 1
|
| 110 |
+
|
| 111 |
+
# combine split1 and split2
|
| 112 |
+
new_data_map = {}
|
| 113 |
+
for dataset in data_map:
|
| 114 |
+
new_dataset = dataset.replace("_split1", "").replace("_split2", "")
|
| 115 |
+
if new_dataset not in new_data_map:
|
| 116 |
+
new_data_map[new_dataset] = []
|
| 117 |
+
new_data_map[new_dataset] += data_map[dataset]
|
| 118 |
+
data_map = new_data_map
|
| 119 |
+
|
| 120 |
+
if self.shuffle_individual_datasets:
|
| 121 |
+
for task, samples in data_map.items():
|
| 122 |
+
random.shuffle(samples)
|
| 123 |
+
|
| 124 |
+
datasets = list(data_map.keys())
|
| 125 |
+
|
| 126 |
+
logger.info(
|
| 127 |
+
f"Batching Echo data properly for effective batch size of {self.effective_batch_size}..."
|
| 128 |
+
)
|
| 129 |
+
all_batches = []
|
| 130 |
+
for dataset in datasets:
|
| 131 |
+
dataset_samples = data_map[dataset]
|
| 132 |
+
for i in range(0, len(dataset_samples), self.effective_batch_size):
|
| 133 |
+
batch = dataset_samples[i : i + self.effective_batch_size]
|
| 134 |
+
if len(batch) == self.effective_batch_size:
|
| 135 |
+
all_batches.append(batch)
|
| 136 |
+
else:
|
| 137 |
+
logger.info(f"Skip 1 batch for dataset {dataset}.")
|
| 138 |
+
random.shuffle(all_batches)
|
| 139 |
+
|
| 140 |
+
final_idx_order = []
|
| 141 |
+
for batch in all_batches:
|
| 142 |
+
for idx in batch:
|
| 143 |
+
final_idx_order.append(idx)
|
| 144 |
+
|
| 145 |
+
self.data = [all_samples[idx] for idx in final_idx_order]
|
| 146 |
+
logger.info(f"Loaded {len(self.data)} samples.")
|
| 147 |
+
|
| 148 |
+
def __getitem__(self, index):
|
| 149 |
+
sample = self.data[index]
|
| 150 |
+
if self.split == "train":
|
| 151 |
+
return TrainSample(
|
| 152 |
+
texts=[sample.query, sample.positive, sample.negative], label=1.0
|
| 153 |
+
)
|
| 154 |
+
elif self.split == "validation":
|
| 155 |
+
assert False, "E5Data does not have a validation split."
|
l3prune/dataset/Wiki1M.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .dataset import DataSample, TrainSample, Dataset
|
| 2 |
+
from accelerate.logging import get_logger
|
| 3 |
+
|
| 4 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Wiki1M(Dataset):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
dataset_name: str = "Wiki1M",
|
| 11 |
+
split: str = "validation",
|
| 12 |
+
file_path: str = "cache/wiki1m_for_simcse.txt",
|
| 13 |
+
):
|
| 14 |
+
self.dataset_name = dataset_name
|
| 15 |
+
self.split = split
|
| 16 |
+
self.data = []
|
| 17 |
+
self.load_data(file_path)
|
| 18 |
+
|
| 19 |
+
def __len__(self):
|
| 20 |
+
return len(self.data)
|
| 21 |
+
|
| 22 |
+
def load_data(self, file_path: str = None):
|
| 23 |
+
logger.info(f"Loading Wiki1M data from {file_path}...")
|
| 24 |
+
id_ = 0
|
| 25 |
+
with open(file_path, "r") as f:
|
| 26 |
+
for line in f:
|
| 27 |
+
line = line.strip()
|
| 28 |
+
self.data.append(
|
| 29 |
+
DataSample(
|
| 30 |
+
id_=id_,
|
| 31 |
+
query=line,
|
| 32 |
+
positive=line,
|
| 33 |
+
)
|
| 34 |
+
)
|
| 35 |
+
id_ += 1
|
| 36 |
+
logger.info(f"Loaded {len(self.data)} samples.")
|
| 37 |
+
|
| 38 |
+
def __getitem__(self, index):
|
| 39 |
+
sample = self.data[index]
|
| 40 |
+
if self.split == "train":
|
| 41 |
+
return TrainSample(texts=[sample.query, sample.positive], label=1.0)
|
| 42 |
+
elif self.split == "validation":
|
| 43 |
+
assert False, "Wiki1M does not have a validation split."
|
l3prune/dataset/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .E5Data import E5Data
|
| 2 |
+
from .Wiki1M import Wiki1M
|
l3prune/dataset/dataset.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Union, List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@dataclass
|
| 8 |
+
class DataSample:
|
| 9 |
+
id_: int
|
| 10 |
+
query: str
|
| 11 |
+
positive: str
|
| 12 |
+
negative: str = None
|
| 13 |
+
task_name: str = None
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class TrainSample:
|
| 17 |
+
"""
|
| 18 |
+
Structure for one input example with texts, the label and a unique id
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0
|
| 23 |
+
):
|
| 24 |
+
"""
|
| 25 |
+
Creates one TrainSample with the given texts, guid and label
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
:param guid
|
| 29 |
+
id for the example
|
| 30 |
+
:param texts
|
| 31 |
+
the texts for the example.
|
| 32 |
+
:param label
|
| 33 |
+
the label for the example
|
| 34 |
+
"""
|
| 35 |
+
self.guid = guid
|
| 36 |
+
self.texts = texts
|
| 37 |
+
self.label = label
|
| 38 |
+
|
| 39 |
+
def __str__(self):
|
| 40 |
+
return "<TrainSample> label: {}, texts: {}".format(
|
| 41 |
+
str(self.label), "; ".join(self.texts)
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Dataset(torch.utils.data.Dataset):
|
| 46 |
+
def load_data(self, file_path: str = None):
|
| 47 |
+
raise NotImplementedError()
|
| 48 |
+
|
| 49 |
+
def __getitem__(self, index):
|
| 50 |
+
raise NotImplementedError()
|
| 51 |
+
|
| 52 |
+
def __len__(self):
|
| 53 |
+
raise NotImplementedError()
|
l3prune/dataset/utils.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ..dataset import E5Data
|
| 2 |
+
from ..dataset import Wiki1M
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def load_dataset(dataset_name, split="validation", file_path=None, **kwargs):
|
| 6 |
+
"""
|
| 7 |
+
Loads a dataset by name.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
dataset_name (str): Name of the dataset to load.
|
| 11 |
+
split (str): Split of the dataset to load.
|
| 12 |
+
file_path (str): Path to the dataset file.
|
| 13 |
+
"""
|
| 14 |
+
dataset_mapping = {
|
| 15 |
+
"E5": E5Data,
|
| 16 |
+
"Wiki1M": Wiki1M,
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
if dataset_name not in dataset_mapping:
|
| 20 |
+
raise NotImplementedError(f"Dataset name {dataset_name} not supported.")
|
| 21 |
+
|
| 22 |
+
if split not in ["train", "validation", "test"]:
|
| 23 |
+
raise NotImplementedError(f"Split {split} not supported.")
|
| 24 |
+
|
| 25 |
+
return dataset_mapping[dataset_name](split=split, file_path=file_path, **kwargs)
|
l3prune/l3prune.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from functools import partial
|
| 6 |
+
from .model_overrides import get_forward
|
| 7 |
+
|
| 8 |
+
# A custom encode function to override the forward of the model
|
| 9 |
+
def encode_custom(forward, encoder, sentence_feature):
|
| 10 |
+
embed_mask = None
|
| 11 |
+
if "embed_mask" in sentence_feature:
|
| 12 |
+
embed_mask = sentence_feature.pop("embed_mask")
|
| 13 |
+
out, reps = forward(encoder.model, **sentence_feature)
|
| 14 |
+
sentence_feature["embed_mask"] = embed_mask
|
| 15 |
+
|
| 16 |
+
return [encoder.get_pooling(sentence_feature, emb) for emb in reps]
|
| 17 |
+
|
| 18 |
+
def l3prune(encoder, dataset, loss_fn, batch_size=64, num_batches=100):
|
| 19 |
+
dataset = [t for t in dataset]
|
| 20 |
+
subset = random.sample(dataset, batch_size*num_batches)
|
| 21 |
+
subset = [[encoder.prepare_for_tokenization(t) for t in s.texts] for s in subset]
|
| 22 |
+
subset = [subset[i:i + batch_size] for i in range(0, len(subset), batch_size)]
|
| 23 |
+
|
| 24 |
+
num_layers = encoder.model.config.num_hidden_layers
|
| 25 |
+
loss = {i: [] for i in range(1, num_layers+1)}
|
| 26 |
+
forward = get_forward(encoder.model)
|
| 27 |
+
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
# Override the forward of the model to get the intermediate representations in only one pass
|
| 30 |
+
if forward:
|
| 31 |
+
encode = partial(encode_custom, forward)
|
| 32 |
+
for batch in tqdm(subset):
|
| 33 |
+
features = []
|
| 34 |
+
for j in range(3):
|
| 35 |
+
embs = [t[j] for t in batch]
|
| 36 |
+
embs = encoder.tokenize(embs).to(encoder.model.device)
|
| 37 |
+
embs = encode(encoder, embs)
|
| 38 |
+
features += [embs]
|
| 39 |
+
q, d, d_neg = features
|
| 40 |
+
for i in range(num_layers):
|
| 41 |
+
loss[i+1] += [loss_fn(q[i], d[i], d_neg[i])]
|
| 42 |
+
else:
|
| 43 |
+
# Without the override, we have to rerun the forward pass with each layer pruned
|
| 44 |
+
for l in range(num_layers, 0, -1):
|
| 45 |
+
encoder.prune(layer_prune=l)
|
| 46 |
+
for batch in tqdm(subset):
|
| 47 |
+
features = []
|
| 48 |
+
for j in range(3):
|
| 49 |
+
embs = [t[j] for t in batch]
|
| 50 |
+
embs = encoder.tokenize(embs).to(encoder.model.device)
|
| 51 |
+
embs = encoder.forward(embs)
|
| 52 |
+
features += [embs]
|
| 53 |
+
q, d, d_neg = features
|
| 54 |
+
loss[l] += [loss_fn(q, d, d_neg)]
|
| 55 |
+
|
| 56 |
+
loss = [torch.tensor(loss[i]).mean().float().detach() for i in range(1, num_layers+1)]
|
| 57 |
+
|
| 58 |
+
# minima before and after midpoint
|
| 59 |
+
midpoint = num_layers // 2
|
| 60 |
+
small_p = np.argmin(loss[:midpoint]) + 1
|
| 61 |
+
large_p = np.argmin(loss[midpoint:]) + midpoint + 1
|
| 62 |
+
return small_p, large_p
|
l3prune/llmencoder.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from typing import Dict, List, Optional, Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.multiprocessing as mp
|
| 9 |
+
from peft import PeftModel
|
| 10 |
+
from torch import Tensor, device, nn
|
| 11 |
+
from tqdm.autonotebook import tqdm, trange
|
| 12 |
+
from transformers import (
|
| 13 |
+
AutoModel,
|
| 14 |
+
AutoConfig,
|
| 15 |
+
PretrainedConfig,
|
| 16 |
+
AutoTokenizer,
|
| 17 |
+
LlamaConfig,
|
| 18 |
+
MistralConfig,
|
| 19 |
+
GemmaConfig,
|
| 20 |
+
Qwen2Config,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def batch_to_device(batch, target_device: device):
|
| 27 |
+
"""
|
| 28 |
+
send a pytorch batch to a device (CPU/GPU)
|
| 29 |
+
"""
|
| 30 |
+
for key in batch:
|
| 31 |
+
if isinstance(batch[key], Tensor):
|
| 32 |
+
batch[key] = batch[key].to(target_device)
|
| 33 |
+
return batch
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class LLMEncoder(nn.Module):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
model: AutoModel,
|
| 40 |
+
tokenizer: AutoTokenizer,
|
| 41 |
+
pooling_mode: str = "weighted_mean",
|
| 42 |
+
max_length: int = 512,
|
| 43 |
+
doc_max_length: int = 400,
|
| 44 |
+
skip_instruction: bool = True,
|
| 45 |
+
):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.model = model
|
| 48 |
+
self.tokenizer = tokenizer
|
| 49 |
+
self.pooling_mode = pooling_mode
|
| 50 |
+
self.skip_instruction = skip_instruction
|
| 51 |
+
self.max_length = max_length
|
| 52 |
+
self.doc_max_length = doc_max_length
|
| 53 |
+
self.config = model.config
|
| 54 |
+
|
| 55 |
+
@classmethod
|
| 56 |
+
def from_pretrained(
|
| 57 |
+
self,
|
| 58 |
+
base_model_name_or_path,
|
| 59 |
+
peft_model_name_or_path=None,
|
| 60 |
+
cache_dir=None,
|
| 61 |
+
**kwargs,
|
| 62 |
+
):
|
| 63 |
+
"""
|
| 64 |
+
Load a pretrained model from a model identifier or path.
|
| 65 |
+
Args:
|
| 66 |
+
base_model_name_or_path: Model identifier or path to pretrained model.
|
| 67 |
+
peft_model_name_or_path: Path to any PEFT models to apply.
|
| 68 |
+
Returns: L3Prune model.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
# pop out encoder args
|
| 72 |
+
keys = ["pooling_mode", "max_length", "doc_max_length", "skip_instruction"]
|
| 73 |
+
encoder_args = {
|
| 74 |
+
key: kwargs.pop(key, None) for key in keys if kwargs.get(key) is not None
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path, cache_dir=cache_dir)
|
| 78 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 79 |
+
tokenizer.padding_side = "left"
|
| 80 |
+
|
| 81 |
+
config = AutoConfig.from_pretrained(base_model_name_or_path)
|
| 82 |
+
model = AutoModel.from_pretrained(base_model_name_or_path, cache_dir=cache_dir, **kwargs)
|
| 83 |
+
|
| 84 |
+
if os.path.isdir(base_model_name_or_path) and os.path.exists(
|
| 85 |
+
f"{base_model_name_or_path}/config.json"
|
| 86 |
+
):
|
| 87 |
+
with open(f"{base_model_name_or_path}/config.json", "r") as fIn:
|
| 88 |
+
config_dict = json.load(fIn)
|
| 89 |
+
config = PretrainedConfig.from_dict(config_dict)
|
| 90 |
+
model.config._name_or_path = config._name_or_path
|
| 91 |
+
|
| 92 |
+
if peft_model_name_or_path is not None:
|
| 93 |
+
model = PeftModel.from_pretrained(
|
| 94 |
+
model,
|
| 95 |
+
peft_model_name_or_path,
|
| 96 |
+
)
|
| 97 |
+
model = model.merge_and_unload()
|
| 98 |
+
|
| 99 |
+
config = {}
|
| 100 |
+
if os.path.exists(f"{base_model_name_or_path}/l3prune_config.json"):
|
| 101 |
+
with open(f"{base_model_name_or_path}/l3prune_config.json", "r") as fIn:
|
| 102 |
+
l3prune_config = json.load(fIn)
|
| 103 |
+
config.update(l3prune_config)
|
| 104 |
+
|
| 105 |
+
for key, value in encoder_args.items():
|
| 106 |
+
config[key] = value
|
| 107 |
+
|
| 108 |
+
return self(model=model, tokenizer=tokenizer, **config)
|
| 109 |
+
|
| 110 |
+
def prune(self, percent_prune=0):
|
| 111 |
+
"""
|
| 112 |
+
Prune a model to a percentage of layers of the base model. If percent_prune is equal to or greater than 1,
|
| 113 |
+
it is taken as the specific layer number to prune to. For example, if percent_prune=0.3, 30% of the layers will be pruned. If
|
| 114 |
+
percent_prune=3, the model will be pruned to 3 layers.
|
| 115 |
+
"""
|
| 116 |
+
# take it as the specific layer number to prune to
|
| 117 |
+
if percent_prune >= 1:
|
| 118 |
+
new_num_layers = int(percent_prune)
|
| 119 |
+
else:
|
| 120 |
+
new_num_layers = int(self.model.config.num_hidden_layers * (1 - percent_prune))
|
| 121 |
+
print(f"Pruning to {new_num_layers} layer.")
|
| 122 |
+
self.model.layers = self.model.layers[:new_num_layers]
|
| 123 |
+
self.model.config.num_hidden_layers = new_num_layers
|
| 124 |
+
|
| 125 |
+
def prepare_for_tokenization(self, text):
|
| 126 |
+
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B-Instruct":
|
| 127 |
+
text = (
|
| 128 |
+
"<|start_header_id|>user<|end_header_id|>\n\n"
|
| 129 |
+
+ text.strip()
|
| 130 |
+
+ "<|eot_id|>"
|
| 131 |
+
)
|
| 132 |
+
return text
|
| 133 |
+
if self.model.config._name_or_path in [
|
| 134 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 135 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
| 136 |
+
]:
|
| 137 |
+
text = "[INST] " + text.strip() + " [/INST]"
|
| 138 |
+
if self.model.config._name_or_path in [
|
| 139 |
+
"google/gemma-2-9b-it",
|
| 140 |
+
]:
|
| 141 |
+
text = "<bos><start_of_turn>user\n" + text.strip() + "<end_of_turn>"
|
| 142 |
+
if self.model.config._name_or_path in [
|
| 143 |
+
"Qwen/Qwen2-1.5B-Instruct",
|
| 144 |
+
"Qwen/Qwen2-7B-Instruct",
|
| 145 |
+
]:
|
| 146 |
+
text = "<|im_start|>user\n" + text.strip() + "<|im_end|>"
|
| 147 |
+
if self.pooling_mode == "eos_token":
|
| 148 |
+
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B":
|
| 149 |
+
text = text.strip() + "<|end_of_text|>"
|
| 150 |
+
elif isinstance(self.model.config, LlamaConfig) or isinstance(
|
| 151 |
+
self.model.config, MistralConfig
|
| 152 |
+
):
|
| 153 |
+
text = text.strip() + " </s>"
|
| 154 |
+
elif isinstance(self.model.config, GemmaConfig):
|
| 155 |
+
text = text.strip() + "<eos>"
|
| 156 |
+
elif isinstance(self.model.config, Qwen2Config):
|
| 157 |
+
text = text.strip() + "<|endoftext|>"
|
| 158 |
+
return text
|
| 159 |
+
|
| 160 |
+
def tokenize(self, texts):
|
| 161 |
+
texts_2 = []
|
| 162 |
+
original_texts = []
|
| 163 |
+
for text in texts:
|
| 164 |
+
t = text.split("!@#$%^&*()")
|
| 165 |
+
texts_2.append(t[1] if len(t) > 1 else "")
|
| 166 |
+
original_texts.append("".join(t))
|
| 167 |
+
|
| 168 |
+
original = self.tokenizer(
|
| 169 |
+
original_texts,
|
| 170 |
+
return_tensors="pt",
|
| 171 |
+
padding=True,
|
| 172 |
+
truncation=True,
|
| 173 |
+
max_length=self.max_length,
|
| 174 |
+
)
|
| 175 |
+
embed_mask = None
|
| 176 |
+
for t_i, t in enumerate(texts_2):
|
| 177 |
+
ids = self.tokenizer(
|
| 178 |
+
[t],
|
| 179 |
+
return_tensors="pt",
|
| 180 |
+
padding=True,
|
| 181 |
+
truncation=True,
|
| 182 |
+
max_length=self.max_length,
|
| 183 |
+
add_special_tokens=False,
|
| 184 |
+
)
|
| 185 |
+
if embed_mask is None:
|
| 186 |
+
e_m = torch.zeros_like(original["attention_mask"][t_i])
|
| 187 |
+
if len(ids["input_ids"][0]) > 0:
|
| 188 |
+
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
|
| 189 |
+
len(ids["input_ids"][0])
|
| 190 |
+
)
|
| 191 |
+
embed_mask = e_m.unsqueeze(0)
|
| 192 |
+
else:
|
| 193 |
+
e_m = torch.zeros_like(original["attention_mask"][t_i])
|
| 194 |
+
if len(ids["input_ids"][0]) > 0:
|
| 195 |
+
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
|
| 196 |
+
len(ids["input_ids"][0])
|
| 197 |
+
)
|
| 198 |
+
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
|
| 199 |
+
|
| 200 |
+
original["embed_mask"] = embed_mask
|
| 201 |
+
return original
|
| 202 |
+
|
| 203 |
+
def _skip_instruction(self, sentence_feature):
|
| 204 |
+
assert (
|
| 205 |
+
sentence_feature["attention_mask"].shape
|
| 206 |
+
== sentence_feature["embed_mask"].shape
|
| 207 |
+
)
|
| 208 |
+
sentence_feature["attention_mask"] = sentence_feature["embed_mask"]
|
| 209 |
+
|
| 210 |
+
def forward(self, sentence_feature: Dict[str, Tensor]):
|
| 211 |
+
embed_mask = None
|
| 212 |
+
if "embed_mask" in sentence_feature:
|
| 213 |
+
embed_mask = sentence_feature.pop("embed_mask")
|
| 214 |
+
reps = self.model(**sentence_feature)
|
| 215 |
+
sentence_feature["embed_mask"] = embed_mask
|
| 216 |
+
|
| 217 |
+
return self.get_pooling(sentence_feature, reps.last_hidden_state)
|
| 218 |
+
|
| 219 |
+
def get_pooling(self, features, last_hidden_states): # All models padded from left
|
| 220 |
+
assert (
|
| 221 |
+
self.tokenizer.padding_side == "left"
|
| 222 |
+
), "Pooling modes are implemented for padding from left."
|
| 223 |
+
if self.skip_instruction:
|
| 224 |
+
self._skip_instruction(features)
|
| 225 |
+
seq_lengths = features["attention_mask"].sum(dim=-1)
|
| 226 |
+
if self.pooling_mode == "mean":
|
| 227 |
+
return torch.stack(
|
| 228 |
+
[
|
| 229 |
+
last_hidden_states[i, -length:, :].mean(dim=0)
|
| 230 |
+
for i, length in enumerate(seq_lengths)
|
| 231 |
+
],
|
| 232 |
+
dim=0,
|
| 233 |
+
)
|
| 234 |
+
elif self.pooling_mode == "weighted_mean":
|
| 235 |
+
bs, l, _ = last_hidden_states.shape
|
| 236 |
+
complete_weights = torch.zeros(bs, l, device=last_hidden_states.device)
|
| 237 |
+
for i, seq_l in enumerate(seq_lengths):
|
| 238 |
+
if seq_l > 0:
|
| 239 |
+
complete_weights[i, -seq_l:] = torch.arange(seq_l) + 1
|
| 240 |
+
complete_weights[i] /= torch.clamp(
|
| 241 |
+
complete_weights[i].sum(), min=1e-9
|
| 242 |
+
)
|
| 243 |
+
return torch.sum(last_hidden_states * complete_weights.unsqueeze(-1), dim=1)
|
| 244 |
+
elif self.pooling_mode == "eos_token" or self.pooling_mode == "last_token":
|
| 245 |
+
return last_hidden_states[:, -1]
|
| 246 |
+
elif self.pooling_mode == "bos_token":
|
| 247 |
+
return last_hidden_states[
|
| 248 |
+
features["input_ids"] == self.tokenizer.bos_token_id
|
| 249 |
+
]
|
| 250 |
+
else:
|
| 251 |
+
raise ValueError(f"{self.pooling_mode} is not implemented yet.")
|
| 252 |
+
|
| 253 |
+
def _convert_to_str(self, instruction, text):
|
| 254 |
+
tokenized_q = self.tokenizer(
|
| 255 |
+
text,
|
| 256 |
+
return_tensors="pt",
|
| 257 |
+
padding=True,
|
| 258 |
+
truncation=True,
|
| 259 |
+
max_length=self.max_length,
|
| 260 |
+
add_special_tokens=False,
|
| 261 |
+
)
|
| 262 |
+
tokenized_q_length = len(tokenized_q["input_ids"][0])
|
| 263 |
+
|
| 264 |
+
while tokenized_q_length > self.doc_max_length:
|
| 265 |
+
reduction_ratio = self.doc_max_length / tokenized_q_length
|
| 266 |
+
reduced_length = int(len(text.split()) * reduction_ratio)
|
| 267 |
+
text = " ".join(text.split()[:reduced_length])
|
| 268 |
+
tokenized_q = self.tokenizer(
|
| 269 |
+
text,
|
| 270 |
+
return_tensors="pt",
|
| 271 |
+
padding=True,
|
| 272 |
+
truncation=True,
|
| 273 |
+
max_length=self.max_length,
|
| 274 |
+
add_special_tokens=False,
|
| 275 |
+
)
|
| 276 |
+
tokenized_q_length = len(tokenized_q["input_ids"][0])
|
| 277 |
+
|
| 278 |
+
return (
|
| 279 |
+
f"{instruction.strip()} !@#$%^&*(){text}"
|
| 280 |
+
if instruction
|
| 281 |
+
else f"!@#$%^&*(){text}"
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
def encode(
|
| 285 |
+
self,
|
| 286 |
+
sentences: Union[str, List[str]],
|
| 287 |
+
batch_size: int = 32,
|
| 288 |
+
show_progress_bar: bool = True,
|
| 289 |
+
convert_to_numpy: bool = False,
|
| 290 |
+
convert_to_tensor: bool = False,
|
| 291 |
+
device: Optional[str] = None,
|
| 292 |
+
):
|
| 293 |
+
"""
|
| 294 |
+
Encode a list of sentences to their respective embeddings. The sentences can be a list of strings or a string.
|
| 295 |
+
Args:
|
| 296 |
+
sentences: sentence or sentences to encode.
|
| 297 |
+
batch_size: batch size for turning sentence tokens into embeddings.
|
| 298 |
+
show_progress_bar: whether to show progress bars during encoding steps.
|
| 299 |
+
convert_to_numpy: If true, return numpy arrays instead of torch tensors.
|
| 300 |
+
convert_to_tensor: If true, return torch tensors (default).
|
| 301 |
+
device: torch backend device identifier (e.g., 'cuda', 'cpu','mps' etc.). If not specified,
|
| 302 |
+
the default is to use cuda when available, otherwise cpu. Note that only the choice of 'cuda' supports
|
| 303 |
+
multiprocessing as currently implemented.
|
| 304 |
+
|
| 305 |
+
Returns: embeddings of the sentences. Embeddings are detached and always on the CPU (see _encode implementation).
|
| 306 |
+
|
| 307 |
+
"""
|
| 308 |
+
if isinstance(sentences[0], str) and isinstance(sentences[-1], int):
|
| 309 |
+
sentences = [sentences]
|
| 310 |
+
# required for MEDI version of MTEB
|
| 311 |
+
if isinstance(sentences[0], str):
|
| 312 |
+
sentences = [[""] + [sentence] for sentence in sentences]
|
| 313 |
+
|
| 314 |
+
if device is None:
|
| 315 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 316 |
+
|
| 317 |
+
concatenated_input_texts = []
|
| 318 |
+
for sentence in sentences:
|
| 319 |
+
assert isinstance(sentence[0], str)
|
| 320 |
+
assert isinstance(sentence[1], str)
|
| 321 |
+
concatenated_input_texts.append(
|
| 322 |
+
self._convert_to_str(sentence[0], sentence[1])
|
| 323 |
+
)
|
| 324 |
+
sentences = concatenated_input_texts
|
| 325 |
+
|
| 326 |
+
self.eval()
|
| 327 |
+
|
| 328 |
+
if convert_to_tensor:
|
| 329 |
+
convert_to_numpy = False
|
| 330 |
+
|
| 331 |
+
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
|
| 332 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
|
| 333 |
+
all_embeddings = []
|
| 334 |
+
|
| 335 |
+
if torch.cuda.device_count() <= 1:
|
| 336 |
+
# This branch also support mps devices
|
| 337 |
+
self.to(device)
|
| 338 |
+
for start_index in trange(
|
| 339 |
+
0,
|
| 340 |
+
len(sentences),
|
| 341 |
+
batch_size,
|
| 342 |
+
desc="Batches",
|
| 343 |
+
disable=not show_progress_bar,
|
| 344 |
+
):
|
| 345 |
+
sentences_batch = sentences_sorted[
|
| 346 |
+
start_index : start_index + batch_size
|
| 347 |
+
]
|
| 348 |
+
embeddings = self._encode(
|
| 349 |
+
sentences_batch, device=device, convert_to_numpy=convert_to_numpy
|
| 350 |
+
)
|
| 351 |
+
all_embeddings.append(embeddings)
|
| 352 |
+
else:
|
| 353 |
+
|
| 354 |
+
num_proc = torch.cuda.device_count()
|
| 355 |
+
cuda_compatible_multiprocess = mp.get_context("spawn")
|
| 356 |
+
with cuda_compatible_multiprocess.Pool(num_proc) as p:
|
| 357 |
+
sentences_batches = [
|
| 358 |
+
sentences_sorted[start_index : start_index + batch_size]
|
| 359 |
+
for start_index in range(0, len(sentences), batch_size)
|
| 360 |
+
]
|
| 361 |
+
|
| 362 |
+
progress_bar = tqdm(
|
| 363 |
+
total=len(sentences_batches),
|
| 364 |
+
desc="Batches",
|
| 365 |
+
disable=not show_progress_bar,
|
| 366 |
+
)
|
| 367 |
+
results = []
|
| 368 |
+
|
| 369 |
+
def update(*args):
|
| 370 |
+
progress_bar.update()
|
| 371 |
+
|
| 372 |
+
for batch in sentences_batches:
|
| 373 |
+
results.append(
|
| 374 |
+
p.apply_async(
|
| 375 |
+
self._encode,
|
| 376 |
+
args=(batch, None, convert_to_numpy, True),
|
| 377 |
+
callback=update,
|
| 378 |
+
)
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
all_embeddings = [result.get() for result in results]
|
| 382 |
+
progress_bar.close()
|
| 383 |
+
|
| 384 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
| 385 |
+
all_embeddings = all_embeddings[np.argsort(length_sorted_idx)]
|
| 386 |
+
all_embeddings = all_embeddings.to(torch.float32)
|
| 387 |
+
if convert_to_numpy:
|
| 388 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
| 389 |
+
return all_embeddings
|
| 390 |
+
|
| 391 |
+
def save(self, output_path, merge_before_save=False, save_config=True):
|
| 392 |
+
if merge_before_save and isinstance(self.model, PeftModel):
|
| 393 |
+
self.model = self.model.merge_and_unload()
|
| 394 |
+
if hasattr(self.model, "_hf_peft_config_loaded"):
|
| 395 |
+
self.model._hf_peft_config_loaded = False
|
| 396 |
+
|
| 397 |
+
self.model.save_pretrained(output_path)
|
| 398 |
+
self.tokenizer.save_pretrained(output_path)
|
| 399 |
+
|
| 400 |
+
l3prune_config = {
|
| 401 |
+
"pooling_mode": self.pooling_mode,
|
| 402 |
+
"max_length": self.max_length,
|
| 403 |
+
"doc_max_length": self.doc_max_length,
|
| 404 |
+
"skip_instruction": self.skip_instruction,
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
if save_config:
|
| 408 |
+
os.makedirs(output_path, exist_ok=True)
|
| 409 |
+
with open(f"{output_path}/l3prune_config.json", "w") as fOut:
|
| 410 |
+
json.dump(l3prune_config, fOut, indent=4)
|
| 411 |
+
|
| 412 |
+
def _encode(
|
| 413 |
+
self,
|
| 414 |
+
sentences_batch,
|
| 415 |
+
device: Optional[str] = None,
|
| 416 |
+
convert_to_numpy: bool = False,
|
| 417 |
+
multiprocessing=False,
|
| 418 |
+
):
|
| 419 |
+
if multiprocessing:
|
| 420 |
+
# multiprocessing only supports CUDA devices at this time, so we ignore the value of device
|
| 421 |
+
# and use cuda:rank for the device
|
| 422 |
+
rank = mp.current_process()._identity[0]
|
| 423 |
+
if device is None and torch.cuda.is_available():
|
| 424 |
+
device = f"cuda:{rank % torch.cuda.device_count()}"
|
| 425 |
+
|
| 426 |
+
self.to(device)
|
| 427 |
+
features = self.tokenize(
|
| 428 |
+
[self.prepare_for_tokenization(sentence) for sentence in sentences_batch]
|
| 429 |
+
)
|
| 430 |
+
features = batch_to_device(features, device)
|
| 431 |
+
|
| 432 |
+
with torch.no_grad():
|
| 433 |
+
embeddings = self.forward(features)
|
| 434 |
+
embeddings = embeddings.detach()
|
| 435 |
+
embeddings = embeddings.cpu()
|
| 436 |
+
|
| 437 |
+
return embeddings
|
| 438 |
+
|
| 439 |
+
def _text_length(self, text: Union[List[int], List[List[int]]]):
|
| 440 |
+
"""
|
| 441 |
+
Help function to get the length for the input text. Text can be either a string (which means a single text)
|
| 442 |
+
a list of ints (which means a single tokenized text), or a tuple of list of ints
|
| 443 |
+
(representing several text inputs to the model).
|
| 444 |
+
"""
|
| 445 |
+
if (
|
| 446 |
+
isinstance(text, str)
|
| 447 |
+
or (isinstance(text, list) and isinstance(text[0], int))
|
| 448 |
+
or len(text) == 0
|
| 449 |
+
): # Single text, list of ints, or empty
|
| 450 |
+
return len(text)
|
| 451 |
+
if isinstance(text, dict): # {key: value} case
|
| 452 |
+
return len(next(iter(text.values())))
|
| 453 |
+
elif not hasattr(text, "__len__"): # Object has no len() method
|
| 454 |
+
return 1
|
| 455 |
+
else:
|
| 456 |
+
return sum([len(t) for t in text])
|
| 457 |
+
|
| 458 |
+
def resize_token_embeddings(
|
| 459 |
+
self,
|
| 460 |
+
new_num_tokens: Optional[int] = None,
|
| 461 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 462 |
+
) -> nn.Embedding:
|
| 463 |
+
return self.model.resize_token_embeddings(
|
| 464 |
+
new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
| 468 |
+
self.model.gradient_checkpointing_enable(
|
| 469 |
+
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs
|
| 470 |
+
)
|
l3prune/loss/HardNegativeNLLLoss.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, Tensor
|
| 3 |
+
from .loss_utils import cos_sim, mismatched_sizes_all_gather
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class HardNegativeNLLLoss:
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
scale: float = 20.0,
|
| 10 |
+
similarity_fct=cos_sim,
|
| 11 |
+
):
|
| 12 |
+
self.scale = scale
|
| 13 |
+
self.similarity_fct = similarity_fct
|
| 14 |
+
self.cross_entropy_loss = nn.CrossEntropyLoss()
|
| 15 |
+
|
| 16 |
+
def __call__(
|
| 17 |
+
self,
|
| 18 |
+
q_reps: Tensor,
|
| 19 |
+
d_reps_pos: Tensor,
|
| 20 |
+
d_reps_neg: Tensor = None,
|
| 21 |
+
):
|
| 22 |
+
if d_reps_neg is None:
|
| 23 |
+
d_reps_neg = d_reps_pos[:0, :]
|
| 24 |
+
|
| 25 |
+
if torch.distributed.is_initialized():
|
| 26 |
+
full_d_reps_pos = mismatched_sizes_all_gather(d_reps_pos)
|
| 27 |
+
full_d_reps_pos = torch.cat(full_d_reps_pos)
|
| 28 |
+
|
| 29 |
+
full_q_reps = mismatched_sizes_all_gather(q_reps)
|
| 30 |
+
full_q_reps = torch.cat(full_q_reps)
|
| 31 |
+
|
| 32 |
+
full_d_reps_neg = mismatched_sizes_all_gather(d_reps_neg)
|
| 33 |
+
full_d_reps_neg = torch.cat(full_d_reps_neg)
|
| 34 |
+
else:
|
| 35 |
+
full_d_reps_pos = d_reps_pos
|
| 36 |
+
full_q_reps = q_reps
|
| 37 |
+
full_d_reps_neg = d_reps_neg
|
| 38 |
+
|
| 39 |
+
d_reps = torch.cat([full_d_reps_pos, full_d_reps_neg], dim=0)
|
| 40 |
+
scores = self.similarity_fct(full_q_reps, d_reps) * self.scale
|
| 41 |
+
labels = torch.tensor(
|
| 42 |
+
range(len(scores)), dtype=torch.long, device=scores.device
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
loss = self.cross_entropy_loss(scores, labels)
|
| 46 |
+
return loss
|
l3prune/loss/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .HardNegativeNLLLoss import HardNegativeNLLLoss
|
l3prune/loss/loss_utils.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import Tensor
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AllGather(torch.autograd.Function):
|
| 6 |
+
"""
|
| 7 |
+
all_gather with gradient back-propagation
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
@staticmethod
|
| 11 |
+
def forward(ctx, tensor_list, tensor, group, async_op):
|
| 12 |
+
torch.distributed.all_gather(
|
| 13 |
+
tensor_list, tensor, group=group, async_op=async_op
|
| 14 |
+
)
|
| 15 |
+
return tuple(tensor_list)
|
| 16 |
+
|
| 17 |
+
@staticmethod
|
| 18 |
+
def backward(ctx, *grad_list):
|
| 19 |
+
grad_list = list(grad_list)
|
| 20 |
+
rank = torch.distributed.get_rank()
|
| 21 |
+
|
| 22 |
+
dist_ops = [
|
| 23 |
+
torch.distributed.reduce(grad_list[i], i, async_op=True)
|
| 24 |
+
for i in range(torch.distributed.get_world_size())
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
for op in dist_ops:
|
| 28 |
+
op.wait()
|
| 29 |
+
|
| 30 |
+
return None, grad_list[rank], None, None
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
all_gather_with_grad = AllGather.apply
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def cos_sim(a: Tensor, b: Tensor):
|
| 37 |
+
"""
|
| 38 |
+
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
|
| 39 |
+
:return: Matrix with res[i][j] = cos_sim(a[i], b[j])
|
| 40 |
+
"""
|
| 41 |
+
if not isinstance(a, torch.Tensor):
|
| 42 |
+
a = torch.tensor(a)
|
| 43 |
+
|
| 44 |
+
if not isinstance(b, torch.Tensor):
|
| 45 |
+
b = torch.tensor(b)
|
| 46 |
+
|
| 47 |
+
if len(a.shape) == 1:
|
| 48 |
+
a = a.unsqueeze(0)
|
| 49 |
+
|
| 50 |
+
if len(b.shape) == 1:
|
| 51 |
+
b = b.unsqueeze(0)
|
| 52 |
+
|
| 53 |
+
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
|
| 54 |
+
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
|
| 55 |
+
return torch.mm(a_norm, b_norm.transpose(0, 1))
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def mismatched_sizes_all_gather(
|
| 59 |
+
tensor: Tensor, group=None, async_op=False, mismatched_axis=0
|
| 60 |
+
):
|
| 61 |
+
# all_gather doesn't support tensor lists where the first dimension is mismatched. This does.
|
| 62 |
+
assert torch.distributed.is_initialized(), "torch.distributed not initialized"
|
| 63 |
+
world_size = torch.distributed.get_world_size()
|
| 64 |
+
# let's get the sizes for everyone
|
| 65 |
+
mismatched_sizes = torch.tensor(
|
| 66 |
+
[tensor.shape[mismatched_axis]], dtype=torch.int64, device="cuda"
|
| 67 |
+
)
|
| 68 |
+
sizes = [torch.zeros_like(mismatched_sizes) for _ in range(world_size)]
|
| 69 |
+
torch.distributed.all_gather(
|
| 70 |
+
sizes, mismatched_sizes, group=group, async_op=async_op
|
| 71 |
+
)
|
| 72 |
+
sizes = torch.cat(sizes).cpu().tolist()
|
| 73 |
+
# now pad to the max dim-0 size
|
| 74 |
+
max_size = max(sizes)
|
| 75 |
+
padded = torch.zeros(
|
| 76 |
+
(
|
| 77 |
+
*tensor.shape[:mismatched_axis],
|
| 78 |
+
max_size,
|
| 79 |
+
*tensor.shape[mismatched_axis + 1 :],
|
| 80 |
+
),
|
| 81 |
+
device=tensor.device,
|
| 82 |
+
dtype=tensor.dtype,
|
| 83 |
+
)
|
| 84 |
+
# selects the place where we're adding information
|
| 85 |
+
padded_to_fill = padded.narrow(mismatched_axis, 0, tensor.shape[mismatched_axis])
|
| 86 |
+
padded_to_fill[...] = tensor
|
| 87 |
+
# gather the padded tensors
|
| 88 |
+
tensor_list = [
|
| 89 |
+
torch.zeros(padded.shape, device=padded.device, dtype=padded.dtype)
|
| 90 |
+
for _ in range(world_size)
|
| 91 |
+
]
|
| 92 |
+
all_gather_with_grad(tensor_list, padded, group, async_op)
|
| 93 |
+
# trim off the padding
|
| 94 |
+
for rank in range(world_size):
|
| 95 |
+
# checks that the rest is 0
|
| 96 |
+
assert (
|
| 97 |
+
not tensor_list[rank]
|
| 98 |
+
.narrow(
|
| 99 |
+
mismatched_axis,
|
| 100 |
+
sizes[rank],
|
| 101 |
+
padded.shape[mismatched_axis] - sizes[rank],
|
| 102 |
+
)
|
| 103 |
+
.count_nonzero()
|
| 104 |
+
.is_nonzero()
|
| 105 |
+
), "This would remove non-padding information"
|
| 106 |
+
tensor_list[rank] = tensor_list[rank].narrow(mismatched_axis, 0, sizes[rank])
|
| 107 |
+
return tensor_list
|
l3prune/loss/utils.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .HardNegativeNLLLoss import HardNegativeNLLLoss
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def load_loss(loss_class, *args, **kwargs):
|
| 5 |
+
if loss_class == "HardNegativeNLLLoss":
|
| 6 |
+
loss_cls = HardNegativeNLLLoss
|
| 7 |
+
else:
|
| 8 |
+
raise ValueError(f"Unknown loss class {loss_class}")
|
| 9 |
+
return loss_cls(*args, **kwargs)
|
l3prune/model_overrides.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import List, Optional, Tuple, Union
|
| 3 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 4 |
+
from transformers import LlamaConfig, Qwen2Config, Phi3Config, MistralConfig
|
| 5 |
+
|
| 6 |
+
def qwen2_forward(
|
| 7 |
+
self,
|
| 8 |
+
input_ids: torch.LongTensor = None,
|
| 9 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 10 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 11 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 12 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 13 |
+
use_cache: Optional[bool] = None,
|
| 14 |
+
output_attentions: Optional[bool] = None,
|
| 15 |
+
output_hidden_states: Optional[bool] = None,
|
| 16 |
+
return_dict: Optional[bool] = None,
|
| 17 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 18 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 19 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 20 |
+
output_hidden_states = (
|
| 21 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 22 |
+
)
|
| 23 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 24 |
+
|
| 25 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 26 |
+
|
| 27 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 28 |
+
raise ValueError(
|
| 29 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
if self.gradient_checkpointing and self.training:
|
| 33 |
+
if use_cache:
|
| 34 |
+
use_cache = False
|
| 35 |
+
|
| 36 |
+
use_legacy_cache = False
|
| 37 |
+
if inputs_embeds is None:
|
| 38 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 39 |
+
|
| 40 |
+
if cache_position is None:
|
| 41 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 42 |
+
cache_position = torch.arange(
|
| 43 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 44 |
+
)
|
| 45 |
+
if position_ids is None:
|
| 46 |
+
position_ids = cache_position.unsqueeze(0)
|
| 47 |
+
|
| 48 |
+
causal_mask = self._update_causal_mask(
|
| 49 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
hidden_states = inputs_embeds
|
| 53 |
+
|
| 54 |
+
# decoder layers
|
| 55 |
+
layerwise_reps = ()
|
| 56 |
+
all_hidden_states = () if output_hidden_states else None
|
| 57 |
+
all_self_attns = () if output_attentions else None
|
| 58 |
+
next_decoder_cache = None
|
| 59 |
+
|
| 60 |
+
for decoder_layer in self.layers:
|
| 61 |
+
if output_hidden_states:
|
| 62 |
+
all_hidden_states += (hidden_states,)
|
| 63 |
+
|
| 64 |
+
if self.gradient_checkpointing and self.training:
|
| 65 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 66 |
+
decoder_layer.__call__,
|
| 67 |
+
hidden_states,
|
| 68 |
+
causal_mask,
|
| 69 |
+
position_ids,
|
| 70 |
+
past_key_values,
|
| 71 |
+
output_attentions,
|
| 72 |
+
use_cache,
|
| 73 |
+
cache_position,
|
| 74 |
+
)
|
| 75 |
+
else:
|
| 76 |
+
layer_outputs = decoder_layer(
|
| 77 |
+
hidden_states,
|
| 78 |
+
attention_mask=causal_mask,
|
| 79 |
+
position_ids=position_ids,
|
| 80 |
+
past_key_value=past_key_values,
|
| 81 |
+
output_attentions=output_attentions,
|
| 82 |
+
use_cache=use_cache,
|
| 83 |
+
cache_position=cache_position,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
hidden_states = layer_outputs[0]
|
| 87 |
+
layerwise_reps += (hidden_states,)
|
| 88 |
+
|
| 89 |
+
if use_cache:
|
| 90 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 91 |
+
|
| 92 |
+
if output_attentions:
|
| 93 |
+
all_self_attns += (layer_outputs[1],)
|
| 94 |
+
|
| 95 |
+
hidden_states = self.norm(hidden_states)
|
| 96 |
+
layerwise_reps = [self.norm(rep) for rep in layerwise_reps]
|
| 97 |
+
|
| 98 |
+
# add hidden states from the last decoder layer
|
| 99 |
+
if output_hidden_states:
|
| 100 |
+
all_hidden_states += (hidden_states,)
|
| 101 |
+
|
| 102 |
+
next_cache = None
|
| 103 |
+
if use_cache:
|
| 104 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 105 |
+
|
| 106 |
+
if not return_dict:
|
| 107 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 108 |
+
return (BaseModelOutputWithPast(
|
| 109 |
+
last_hidden_state=hidden_states,
|
| 110 |
+
past_key_values=next_cache,
|
| 111 |
+
hidden_states=all_hidden_states,
|
| 112 |
+
attentions=all_self_attns,
|
| 113 |
+
), layerwise_reps)
|
| 114 |
+
|
| 115 |
+
def phi3_forward(
|
| 116 |
+
self,
|
| 117 |
+
input_ids: torch.LongTensor = None,
|
| 118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 119 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 120 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 121 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 122 |
+
use_cache: Optional[bool] = None,
|
| 123 |
+
output_attentions: Optional[bool] = None,
|
| 124 |
+
output_hidden_states: Optional[bool] = None,
|
| 125 |
+
return_dict: Optional[bool] = None,
|
| 126 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 127 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 128 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 129 |
+
output_hidden_states = (
|
| 130 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 131 |
+
)
|
| 132 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 133 |
+
|
| 134 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 135 |
+
|
| 136 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 137 |
+
raise ValueError(
|
| 138 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
if self.gradient_checkpointing and self.training:
|
| 142 |
+
if use_cache:
|
| 143 |
+
use_cache = False
|
| 144 |
+
|
| 145 |
+
use_legacy_cache = False
|
| 146 |
+
|
| 147 |
+
if inputs_embeds is None:
|
| 148 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 149 |
+
|
| 150 |
+
if cache_position is None:
|
| 151 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 152 |
+
cache_position = torch.arange(
|
| 153 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 154 |
+
)
|
| 155 |
+
if position_ids is None:
|
| 156 |
+
position_ids = cache_position.unsqueeze(0)
|
| 157 |
+
|
| 158 |
+
causal_mask = self._update_causal_mask(
|
| 159 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
inputs_embeds = self.embed_dropout(inputs_embeds)
|
| 163 |
+
hidden_states = inputs_embeds
|
| 164 |
+
|
| 165 |
+
# decoder layers
|
| 166 |
+
layerwise_reps = ()
|
| 167 |
+
all_hidden_states = () if output_hidden_states else None
|
| 168 |
+
all_self_attns = () if output_attentions else None
|
| 169 |
+
next_decoder_cache = None
|
| 170 |
+
|
| 171 |
+
for decoder_layer in self.layers:
|
| 172 |
+
if output_hidden_states:
|
| 173 |
+
all_hidden_states += (hidden_states,)
|
| 174 |
+
|
| 175 |
+
if self.gradient_checkpointing and self.training:
|
| 176 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 177 |
+
decoder_layer.__call__,
|
| 178 |
+
hidden_states,
|
| 179 |
+
causal_mask,
|
| 180 |
+
position_ids,
|
| 181 |
+
output_attentions,
|
| 182 |
+
use_cache,
|
| 183 |
+
past_key_values,
|
| 184 |
+
cache_position,
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
layer_outputs = decoder_layer(
|
| 188 |
+
hidden_states,
|
| 189 |
+
attention_mask=causal_mask,
|
| 190 |
+
position_ids=position_ids,
|
| 191 |
+
past_key_value=past_key_values,
|
| 192 |
+
output_attentions=output_attentions,
|
| 193 |
+
use_cache=use_cache,
|
| 194 |
+
cache_position=cache_position,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
hidden_states = layer_outputs[0]
|
| 198 |
+
layerwise_reps += (hidden_states,)
|
| 199 |
+
|
| 200 |
+
if use_cache:
|
| 201 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 202 |
+
|
| 203 |
+
if output_attentions:
|
| 204 |
+
all_self_attns += (layer_outputs[1],)
|
| 205 |
+
|
| 206 |
+
hidden_states = self.norm(hidden_states)
|
| 207 |
+
layerwise_reps = [self.norm(rep) for rep in layerwise_reps]
|
| 208 |
+
|
| 209 |
+
# add hidden states from the last decoder layer
|
| 210 |
+
if output_hidden_states:
|
| 211 |
+
all_hidden_states += (hidden_states,)
|
| 212 |
+
|
| 213 |
+
next_cache = None
|
| 214 |
+
if use_cache:
|
| 215 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 216 |
+
if not return_dict:
|
| 217 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 218 |
+
return (BaseModelOutputWithPast(
|
| 219 |
+
last_hidden_state=hidden_states,
|
| 220 |
+
past_key_values=next_cache,
|
| 221 |
+
hidden_states=all_hidden_states,
|
| 222 |
+
attentions=all_self_attns,
|
| 223 |
+
), layerwise_reps)
|
| 224 |
+
|
| 225 |
+
def mistral_forward(
|
| 226 |
+
self,
|
| 227 |
+
input_ids: torch.LongTensor = None,
|
| 228 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 229 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 230 |
+
past_key_values = None,
|
| 231 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 232 |
+
use_cache: Optional[bool] = None,
|
| 233 |
+
output_attentions: Optional[bool] = None,
|
| 234 |
+
output_hidden_states: Optional[bool] = None,
|
| 235 |
+
return_dict: Optional[bool] = None,
|
| 236 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 237 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 238 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 239 |
+
output_hidden_states = (
|
| 240 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 241 |
+
)
|
| 242 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 243 |
+
|
| 244 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 245 |
+
|
| 246 |
+
# retrieve input_ids and inputs_embeds
|
| 247 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 248 |
+
raise ValueError(
|
| 249 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 253 |
+
use_cache = False
|
| 254 |
+
|
| 255 |
+
if inputs_embeds is None:
|
| 256 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 257 |
+
|
| 258 |
+
return_legacy_cache = False
|
| 259 |
+
|
| 260 |
+
if cache_position is None:
|
| 261 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 262 |
+
cache_position = torch.arange(
|
| 263 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
if position_ids is None:
|
| 267 |
+
position_ids = cache_position.unsqueeze(0)
|
| 268 |
+
|
| 269 |
+
causal_mask = self._update_causal_mask(
|
| 270 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
hidden_states = inputs_embeds
|
| 274 |
+
|
| 275 |
+
# decoder layers
|
| 276 |
+
layerwise_reps = ()
|
| 277 |
+
all_hidden_states = () if output_hidden_states else None
|
| 278 |
+
all_self_attns = () if output_attentions else None
|
| 279 |
+
next_decoder_cache = None
|
| 280 |
+
|
| 281 |
+
for decoder_layer in self.layers:
|
| 282 |
+
if output_hidden_states:
|
| 283 |
+
all_hidden_states += (hidden_states,)
|
| 284 |
+
|
| 285 |
+
if self.gradient_checkpointing and self.training:
|
| 286 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 287 |
+
decoder_layer.__call__,
|
| 288 |
+
hidden_states,
|
| 289 |
+
causal_mask,
|
| 290 |
+
position_ids,
|
| 291 |
+
past_key_values,
|
| 292 |
+
output_attentions,
|
| 293 |
+
use_cache,
|
| 294 |
+
cache_position,
|
| 295 |
+
)
|
| 296 |
+
else:
|
| 297 |
+
layer_outputs = decoder_layer(
|
| 298 |
+
hidden_states,
|
| 299 |
+
attention_mask=causal_mask,
|
| 300 |
+
position_ids=position_ids,
|
| 301 |
+
past_key_value=past_key_values,
|
| 302 |
+
output_attentions=output_attentions,
|
| 303 |
+
use_cache=use_cache,
|
| 304 |
+
cache_position=cache_position,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
hidden_states = layer_outputs[0]
|
| 308 |
+
layerwise_reps += (hidden_states,)
|
| 309 |
+
|
| 310 |
+
if use_cache:
|
| 311 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 312 |
+
|
| 313 |
+
if output_attentions:
|
| 314 |
+
all_self_attns += (layer_outputs[1],)
|
| 315 |
+
|
| 316 |
+
hidden_states = self.norm(hidden_states)
|
| 317 |
+
layerwise_reps = [self.norm(rep) for rep in layerwise_reps]
|
| 318 |
+
|
| 319 |
+
# add hidden states from the last decoder layer
|
| 320 |
+
if output_hidden_states:
|
| 321 |
+
all_hidden_states += (hidden_states,)
|
| 322 |
+
|
| 323 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 324 |
+
if return_legacy_cache:
|
| 325 |
+
next_cache = next_cache.to_legacy_cache()
|
| 326 |
+
|
| 327 |
+
if not return_dict:
|
| 328 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 329 |
+
return (BaseModelOutputWithPast(
|
| 330 |
+
last_hidden_state=hidden_states,
|
| 331 |
+
past_key_values=next_cache,
|
| 332 |
+
hidden_states=all_hidden_states,
|
| 333 |
+
attentions=all_self_attns,
|
| 334 |
+
), layerwise_reps)
|
| 335 |
+
|
| 336 |
+
def llama3_forward(
|
| 337 |
+
self,
|
| 338 |
+
input_ids: torch.LongTensor = None,
|
| 339 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 340 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 341 |
+
past_key_values = None,
|
| 342 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 343 |
+
use_cache: Optional[bool] = None,
|
| 344 |
+
output_attentions: Optional[bool] = None,
|
| 345 |
+
output_hidden_states: Optional[bool] = None,
|
| 346 |
+
return_dict: Optional[bool] = None,
|
| 347 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 348 |
+
):
|
| 349 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 350 |
+
output_hidden_states = (
|
| 351 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 352 |
+
)
|
| 353 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 354 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 355 |
+
|
| 356 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 357 |
+
raise ValueError(
|
| 358 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 362 |
+
use_cache = False
|
| 363 |
+
|
| 364 |
+
if inputs_embeds is None:
|
| 365 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 366 |
+
|
| 367 |
+
return_legacy_cache = False
|
| 368 |
+
|
| 369 |
+
if cache_position is None:
|
| 370 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 371 |
+
cache_position = torch.arange(
|
| 372 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 373 |
+
)
|
| 374 |
+
if position_ids is None:
|
| 375 |
+
position_ids = cache_position.unsqueeze(0)
|
| 376 |
+
|
| 377 |
+
causal_mask = self._update_causal_mask(
|
| 378 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 379 |
+
)
|
| 380 |
+
hidden_states = inputs_embeds
|
| 381 |
+
|
| 382 |
+
# create position embeddings to be shared across the decoder layers
|
| 383 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 384 |
+
|
| 385 |
+
# decoder layers
|
| 386 |
+
layerwise_reps = ()
|
| 387 |
+
all_hidden_states = () if output_hidden_states else None
|
| 388 |
+
all_self_attns = () if output_attentions else None
|
| 389 |
+
next_decoder_cache = None
|
| 390 |
+
|
| 391 |
+
for decoder_layer in self.layers:
|
| 392 |
+
if output_hidden_states:
|
| 393 |
+
all_hidden_states += (hidden_states,)
|
| 394 |
+
|
| 395 |
+
if self.gradient_checkpointing and self.training:
|
| 396 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 397 |
+
decoder_layer.__call__,
|
| 398 |
+
hidden_states,
|
| 399 |
+
causal_mask,
|
| 400 |
+
position_ids,
|
| 401 |
+
past_key_values,
|
| 402 |
+
output_attentions,
|
| 403 |
+
use_cache,
|
| 404 |
+
cache_position,
|
| 405 |
+
position_embeddings,
|
| 406 |
+
)
|
| 407 |
+
else:
|
| 408 |
+
layer_outputs = decoder_layer(
|
| 409 |
+
hidden_states,
|
| 410 |
+
attention_mask=causal_mask,
|
| 411 |
+
position_ids=position_ids,
|
| 412 |
+
past_key_value=past_key_values,
|
| 413 |
+
output_attentions=output_attentions,
|
| 414 |
+
use_cache=use_cache,
|
| 415 |
+
cache_position=cache_position,
|
| 416 |
+
position_embeddings=position_embeddings,
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
hidden_states = layer_outputs[0]
|
| 420 |
+
layerwise_reps += (hidden_states,)
|
| 421 |
+
|
| 422 |
+
if use_cache:
|
| 423 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 424 |
+
|
| 425 |
+
if output_attentions:
|
| 426 |
+
all_self_attns += (layer_outputs[1],)
|
| 427 |
+
|
| 428 |
+
hidden_states = self.norm(hidden_states)
|
| 429 |
+
layerwise_reps = [self.norm(rep) for rep in layerwise_reps]
|
| 430 |
+
|
| 431 |
+
# add hidden states from the last decoder layer
|
| 432 |
+
if output_hidden_states:
|
| 433 |
+
all_hidden_states += (hidden_states,)
|
| 434 |
+
|
| 435 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 436 |
+
if return_legacy_cache:
|
| 437 |
+
next_cache = next_cache.to_legacy_cache()
|
| 438 |
+
|
| 439 |
+
if not return_dict:
|
| 440 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 441 |
+
return (BaseModelOutputWithPast(
|
| 442 |
+
last_hidden_state=hidden_states,
|
| 443 |
+
past_key_values=next_cache,
|
| 444 |
+
hidden_states=all_hidden_states,
|
| 445 |
+
attentions=all_self_attns,
|
| 446 |
+
), layerwise_reps)
|
| 447 |
+
|
| 448 |
+
def get_forward(model):
|
| 449 |
+
if isinstance(model.config, LlamaConfig):
|
| 450 |
+
return llama3_forward
|
| 451 |
+
elif isinstance(model.config, Qwen2Config):
|
| 452 |
+
return qwen2_forward
|
| 453 |
+
elif isinstance(model.config, Phi3Config):
|
| 454 |
+
return phi3_forward
|
| 455 |
+
elif isinstance(model.config, MistralConfig):
|
| 456 |
+
return mistral_forward
|
| 457 |
+
else:
|
| 458 |
+
return None
|