Spaces:
Sleeping
Sleeping
import warnings | |
import numpy as np | |
import pandas as pd | |
import os | |
import json | |
import random | |
import gradio as gr | |
import torch | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import OneHotEncoder | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline | |
from deap import base, creator, tools, algorithms | |
import gc | |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download') | |
# Initialize Example Emotions Dataset | |
data = { | |
'context': [ | |
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm', | |
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated', | |
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated', | |
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic', | |
'I am pessimistic', 'I feel bored', 'I am envious' | |
], | |
'emotion': [ | |
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger', | |
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust', | |
'disgust', 'optimism', 'pessimism', 'boredom', 'envy' | |
] | |
} | |
df = pd.DataFrame(data) | |
# Encoding the contexts using One-Hot Encoding (memory-efficient) | |
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True) | |
contexts_encoded = encoder.fit_transform(df[['context']]) | |
# Encoding emotions | |
emotions_target = pd.Categorical(df['emotion']).codes | |
emotion_classes = pd.Categorical(df['emotion']).categories | |
# Load pre-trained BERT model for emotion prediction | |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
# Lazy loading for the fine-tuned language model (DialoGPT-medium) | |
_finetuned_lm_tokenizer = None | |
_finetuned_lm_model = None | |
def get_finetuned_lm_model(): | |
global _finetuned_lm_tokenizer, _finetuned_lm_model | |
if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None: | |
model_name = "microsoft/DialoGPT-medium" | |
_finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left') | |
_finetuned_lm_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", low_cpu_mem_usage=True) | |
_finetuned_lm_tokenizer.pad_token = _finetuned_lm_tokenizer.eos_token | |
return _finetuned_lm_tokenizer, _finetuned_lm_model | |
# Enhanced Emotional States | |
emotions = { | |
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0}, | |
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0}, | |
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0}, | |
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0}, | |
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0}, | |
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0}, | |
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0}, | |
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0}, | |
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0}, | |
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0}, | |
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0}, | |
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0}, | |
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}, | |
'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0}, | |
'wit': {'percentage': 15, 'motivation': 'clever', 'intensity': 0}, | |
'curiosity': {'percentage': 20, 'motivation': 'inquisitive', 'intensity': 0}, | |
} | |
total_percentage = 200 | |
emotion_history_file = 'emotion_history.json' | |
def load_historical_data(file_path=emotion_history_file): | |
if os.path.exists(file_path): | |
with open(file_path, 'r') as file: | |
return json.load(file) | |
return [] | |
def save_historical_data(historical_data, file_path=emotion_history_file): | |
with open(file_path, 'w') as file: | |
json.dump(historical_data, file) | |
emotion_history = load_historical_data() | |
def update_emotion(emotion, percentage, intensity): | |
emotions['ideal_state']['percentage'] -= percentage | |
emotions[emotion]['percentage'] += percentage | |
emotions[emotion]['intensity'] = intensity | |
# Introduce some randomness in emotional evolution | |
for e in emotions: | |
if e != emotion and e != 'ideal_state': | |
change = random.uniform(-2, 2) | |
emotions[e]['percentage'] = max(0, emotions[e]['percentage'] + change) | |
total_current = sum(e['percentage'] for e in emotions.values()) | |
adjustment = total_percentage - total_current | |
emotions['ideal_state']['percentage'] += adjustment | |
def normalize_context(context): | |
return context.lower().strip() | |
def evaluate(individual): | |
emotion_values = individual[:len(emotions) - 1] | |
intensities = individual[len(emotions) - 1:-1] | |
ideal_state = individual[-1] | |
ideal_diff = abs(100 - ideal_state) | |
sum_non_ideal = sum(emotion_values) | |
intensity_range = max(intensities) - min(intensities) | |
return ideal_diff, sum_non_ideal, intensity_range | |
def evolve_emotions(): | |
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2)) | |
creator.create("Individual", list, fitness=creator.FitnessMulti) | |
toolbox = base.Toolbox() | |
toolbox.register("attr_float", random.uniform, 0, 20) | |
toolbox.register("attr_intensity", random.uniform, 0, 10) | |
toolbox.register("individual", tools.initCycle, creator.Individual, | |
(toolbox.attr_float,) * (len(emotions) - 1) + | |
(toolbox.attr_intensity,) * (len(emotions) - 1) + | |
(lambda: 100,), n=1) | |
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | |
toolbox.register("mate", tools.cxTwoPoint) | |
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) | |
toolbox.register("select", tools.selNSGA2) | |
toolbox.register("evaluate", evaluate) | |
population = toolbox.population(n=100) | |
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100, | |
stats=None, halloffame=None, verbose=False) | |
best_individual = tools.selBest(population, k=1)[0] | |
emotion_values = best_individual[:len(emotions) - 1] | |
intensities = best_individual[len(emotions) - 1:-1] | |
ideal_state = best_individual[-1] | |
for i, emotion in enumerate(emotions): | |
if emotion != 'ideal_state': | |
emotions[emotion]['percentage'] = emotion_values[i] | |
emotions[emotion]['intensity'] = intensities[i] | |
emotions['ideal_state']['percentage'] = ideal_state | |
def update_emotion_history(emotion, percentage, intensity, context): | |
entry = { | |
'emotion': emotion, | |
'percentage': percentage, | |
'intensity': intensity, | |
'context': context, | |
'timestamp': pd.Timestamp.now().isoformat() | |
} | |
emotion_history.append(entry) | |
if len(emotion_history) > 100: | |
emotion_history.pop(0) | |
save_historical_data(emotion_history) | |
def predict_emotion(context): | |
tokens = emotion_prediction_tokenizer(context, return_tensors='pt', padding=True, truncation=True) | |
outputs = emotion_prediction_model(**tokens) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=1) | |
predicted_emotion = emotion_classes[predicted_class] | |
# Get percentage and intensity based on context | |
percentage = np.random.uniform(5, 20) | |
intensity = np.random.uniform(1, 10) | |
update_emotion(predicted_emotion, percentage, intensity) | |
update_emotion_history(predicted_emotion, percentage, intensity, context) | |
return predicted_emotion | |
def generate_response(context): | |
tokenizer, model = get_finetuned_lm_model() | |
inputs = tokenizer.encode(context, return_tensors='pt') | |
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, pad_token_id=tokenizer.eos_token) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def handle_conversation(user_input): | |
user_input = normalize_context(user_input) | |
predicted_emotion = predict_emotion(user_input) | |
bot_response = generate_response(user_input) | |
return f"Emotion: {predicted_emotion}, Response: {bot_response}" | |
def update_ui(user_input): | |
response = handle_conversation(user_input) | |
return response | |
with gr.Blocks() as demo: | |
user_input = gr.Textbox(label="User Input") | |
response = gr.Textbox(label="Bot Response") | |
submit = gr.Button("Submit") | |
submit.click(update_ui, user_input, response) | |
if __name__ == "__main__": | |
demo.launch() | |