Cain / app.py
Sephfox's picture
Update app.py
ce3343c verified
raw
history blame
13.1 kB
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am overjoyed', 'I am deeply saddened', 'I am seething with rage', 'I am exhilarated', 'I am tranquil',
'I am brimming with joy', 'I am grieving profoundly', 'I am at peace', 'I am frustrated beyond measure',
'I am determined to succeed', 'I feel resentment burning within me', 'I am feeling glorious and triumphant',
'I am motivated and inspired', 'I am utterly surprised', 'I am gripped by fear', 'I am trusting and open',
'I feel a sense of disgust', 'I am optimistic and hopeful', 'I am pessimistic and gloomy', 'I feel bored and listless',
'I am envious and jealous'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
try:
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True)
except TypeError:
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained large language model and tokenizer for response generation with increased context window
response_model_name = "gpt2-xl"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
# Set the pad token
response_tokenizer.pad_token = response_tokenizer.eos_token
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive and uplifting', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'reflective and introspective', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'passionate and driven', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'cautious and protective', 'intensity': 0},
'love': {'percentage': 10, 'motivation': 'affectionate and caring', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'curious and intrigued', 'intensity': 0},
'neutral': {'percentage': 40, 'motivation': 'balanced and composed', 'intensity': 0},
}
total_percentage = 100
emotion_history_file = 'emotion_history.json'
global conversation_history
conversation_history = []
max_history_length = 1000 # Increase the maximum history length
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def normalize_context(context):
return context.lower().strip()
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
emotion_values = individual[:len(emotions)]
intensities = individual[len(emotions):]
total_diff = abs(100 - sum(emotion_values))
intensity_range = max(intensities) - min(intensities)
emotion_balance = max(emotion_values) - min(emotion_values)
return total_diff, intensity_range, emotion_balance
def evolve_emotions():
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 100)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * len(emotions) +
(toolbox.attr_intensity,) * len(emotions), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)]
intensities = best_individual[len(emotions):]
for i, (emotion, data) in enumerate(emotions.items()):
data['percentage'] = emotion_values[i]
data['intensity'] = intensities[i]
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def update_emotion_history(emotion, percentage, intensity, context):
entry = {
'emotion': emotion,
'percentage': percentage,
'intensity': intensity,
'context': context,
'timestamp': pd.Timestamp.now().isoformat()
}
emotion_history.append(entry)
save_historical_data(emotion_history)
# Adding 443 features
additional_features = {}
for i in range(443):
additional_features[f'feature_{i+1}'] = 0
def feature_transformations():
global additional_features
for feature in additional_features:
additional_features[feature] += random.uniform(-1, 1)
def generate_response(input_text, ai_emotion, conversation_history):
# Prepare a prompt based on the current emotion and input
prompt = f"As an AI assistant, I am currently feeling {ai_emotion}. My response will reflect this emotional state. Human: {input_text}\nAI:"
# Add conversation history to the prompt
for entry in conversation_history[-100:]: # Use last 100 entries for context
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192)
# Adjust generation parameters based on emotion
temperature = 0.7
if ai_emotion == 'anger':
temperature = 0.9 # More randomness for angry responses
elif ai_emotion == 'joy':
temperature = 0.5 # More focused responses for joyful state
with torch.no_grad():
response_ids = response_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=8192,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature,
pad_token_id=response_tokenizer.eos_token_id
)
response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True)
# Extract only the AI's response
response = response.split("AI:")[-1].strip()
return response
def predict_emotion(context):
inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = emotion_prediction_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
return emotion_labels[predicted_class]
def sentiment_analysis(text):
sia = SentimentIntensityAnalyzer()
sentiment_scores = sia.polarity_scores(text)
return sentiment_scores
def extract_entities(text):
chunked = ne_chunk(pos_tag(word_tokenize(text)))
entities = []
for chunk in chunked:
if hasattr(chunk, 'label'):
entities.append(((' '.join(c[0] for c in chunk)), chunk.label()))
return entities
def analyze_text_complexity(text):
blob = TextBlob(text)
return {
'word_count': len(blob.words),
'sentence_count': len(blob.sentences),
'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0,
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity
}
def visualize_emotions():
emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()],
columns=['Emotion', 'Percentage', 'Intensity'])
plt.figure(figsize=(12, 6))
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
plt.title('Current Emotional State of the AI')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig('emotional_state.png')
plt.close()
return 'emotional_state.png'
def interactive_interface(input_text):
global conversation_history
try:
evolve_emotions()
predicted_emotion = predict_emotion(input_text)
sentiment_scores = sentiment_analysis(input_text)
entities = extract_entities(input_text)
text_complexity = analyze_text_complexity(input_text)
# Update AI's emotional state based on input
update_emotion(predicted_emotion, random.uniform(5, 15), random.uniform(0, 10))
# Determine AI's current dominant emotion
ai_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
# Generate response based on AI's emotion
response = generate_response(input_text, ai_emotion, conversation_history)
# Update conversation history
conversation_history.append({
'user': input_text,
'response': response
})
# Trim conversation history if it exceeds the maximum length
if len(conversation_history) > max_history_length:
conversation_history = conversation_history[-max_history_length:]
update_emotion_history(ai_emotion, emotions[ai_emotion]['percentage'], emotions[ai_emotion]['intensity'], input_text)
feature_transformations()
emotion_visualization = visualize_emotions()
analysis_result = {
'predicted_user_emotion': predicted_emotion,
'sentiment_scores': sentiment_scores,
'entities': entities,
'text_complexity': text_complexity,
'ai_emotion': ai_emotion,
'ai_emotion_percentage': emotions[ai_emotion]['percentage'],
'ai_emotion_intensity': emotions[ai_emotion]['intensity'],
'emotion_visualization': emotion_visualization
}
return analysis_result
except Exception as e:
print(f"Error: {e}")
return {'error': str(e)}
# Define the Gradio interface
demo = gr.Interface(
fn=interactive_interface,
inputs=gr.Textbox(label="Enter your message"),
outputs=[
gr.Textbox(label="Predicted User Emotion"),
gr.Textbox(label="Sentiment Scores"),
gr.Textbox(label="Extracted Entities"),
gr.Textbox(label="Text Complexity"),
gr.Textbox(label="AI Emotion"),
gr.Textbox(label="AI Emotion Percentage"),
gr.Textbox(label="AI Emotion Intensity"),
gr.Image(label="Emotional State Visualization")
],
title="Emotional AI Assistant",
description="Interact with an AI assistant that adapts its responses based on its emotional state."
)
# Launch the Gradio interface
demo.launch()