Cain / app.py
Sephfox's picture
Update app.py
f9b5f97 verified
raw
history blame
11.8 kB
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
try:
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True)
except TypeError:
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained large language model and tokenizer for response generation with increased context window
response_model_name = "gpt2-xl"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with init_empty_weights():
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
response_model.tie_weights()
response_model.to(device)
# Set the pad token
response_tokenizer.pad_token = response_tokenizer.eos_token
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'love': {'percentage': 10, 'motivation': 'affectionate', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'neutral': {'percentage': 40, 'motivation': 'balanced', 'intensity': 0},
}
total_percentage = 100
emotion_history_file = 'emotion_history.json'
global conversation_history
conversation_history = []
max_history_length = 1000 # Increase the maximum history length
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def normalize_context(context):
return context.lower().strip()
# Create FitnessMulti and Individual outside of evolve_emotions
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
emotion_values = individual[:len(emotions)]
intensities = individual[len(emotions):]
total_diff = abs(100 - sum(emotion_values))
intensity_range = max(intensities) - min(intensities)
emotion_balance = max(emotion_values) - min(emotion_values)
return total_diff, intensity_range, emotion_balance
def evolve_emotions():
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 100)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * len(emotions) +
(toolbox.attr_intensity,) * len(emotions), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)]
intensities = best_individual[len(emotions):]
for i, (emotion, data) in enumerate(emotions.items()):
data['percentage'] = emotion_values[i]
data['intensity'] = intensities[i]
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] /total) * 100
def update_emotion_history(emotion, percentage, intensity, context):
entry = {
'emotion': emotion,
'percentage': percentage,
'intensity': intensity,
'context': context,
'timestamp': pd.Timestamp.now().isoformat()
}
emotion_history.append(entry)
save_historical_data(emotion_history)
# Adding 443 features
additional_features = {}
for i in range(443):
additional_features[f'feature_{i+1}'] = 0
def feature_transformations():
global additional_features
for feature in additional_features:
additional_features[feature] += random.uniform(-1, 1)
def generate_response(input_text, ai_emotion, conversation_history):
# Prepare a prompt based on the current emotion and input
prompt = f"You are an AI assistant created by Sephiroth Baptiste, and you are currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:"
# Add conversation history to the prompt
for entry in conversation_history[-100:]: # Use last 100 entries for context
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192).to(device)
# Adjust generation parameters based on emotion
temperature = 0.7
if (ai_emotion == 'anger'):
temperature = 0.9 # more intense
elif (ai_emotion == 'calmness'):
temperature = 0.5 # more composed
outputs = response_model.generate(
inputs['input_ids'],
max_length=500,
num_return_sequences=1,
temperature=temperature,
pad_token_id=response_tokenizer.eos_token_id
)
response = response_tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.replace(prompt, "").strip()
conversation_history.append({'user': input_text, 'response': response})
return response
def process_input(input_text):
# Predict emotion of the input text
inputs = emotion_prediction_tokenizer(input_text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
logits = emotion_prediction_model(**inputs).logits
predicted_class_id = torch.argmax(logits, dim=1).item()
predicted_emotion = emotion_classes[predicted_class_id]
# Update emotion percentages and intensities based on predicted emotion
update_emotion(predicted_emotion, 5, 5) # Example increment values
update_emotion_history(predicted_emotion, emotions[predicted_emotion]['percentage'], emotions[predicted_emotion]['intensity'], input_text)
# Evolve emotions
evolve_emotions()
# Generate response
response = generate_response(input_text, predicted_emotion, conversation_history)
# Feature transformations
feature_transformations()
return response
def plot_emotion_distribution():
emotion_labels = list(emotions.keys())
emotion_percentages = [emotions[emotion]['percentage'] for emotion in emotion_labels]
emotion_intensities = [emotions[emotion]['intensity'] for emotion in emotion_labels]
fig, ax1 = plt.subplots(figsize=(10, 6))
ax2 = ax1.twinx()
ax1.bar(emotion_labels, emotion_percentages, color='b', alpha=0.6)
ax2.plot(emotion_labels, emotion_intensities, color='r', marker='o', linestyle='dashed', linewidth=2)
ax1.set_xlabel('Emotion')
ax1.set_ylabel('Percentage', color='b')
ax2.set_ylabel('Intensity', color='r')
plt.title('Emotion Distribution and Intensities')
plt.show()
def clear_conversation_history():
global conversation_history
conversation_history = []
# Function to display the history of the 10 most recent conversations
def display_recent_conversations():
num_conversations = min(len(conversation_history), 10)
recent_conversations = conversation_history[-num_conversations:]
conversation_text = ""
for i, conversation in enumerate(recent_conversations, start=1):
conversation_text += f"Conversation {i}:\n"
conversation_text += f"User: {conversation['user']}\n"
conversation_text += f"AI: {conversation['response']}\n\n"
return conversation_text.strip()
with gr.Blocks() as chatbot:
gr.Markdown("# AI Chatbot with Enhanced Emotions")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text")
response_text = gr.Textbox(label="Response", interactive=False)
send_button = gr.Button("Send")
clear_button = gr.Button("Clear Conversation History")
with gr.Row():
recent_conversations = gr.Textbox(label="Recent Conversations", interactive=False)
update_button = gr.Button("Update Recent Conversations")
with gr.Row():
emotion_plot = gr.Plot(label="Emotion Distribution and Intensities")
update_plot_button = gr.Button("Update Emotion Plot")
send_button.click(fn=process_input, inputs=input_text, outputs=response_text)
clear_button.click(fn=clear_conversation_history)
update_button.click(fn=display_recent_conversations, outputs=recent_conversations)
update_plot_button.click(fn=plot_emotion_distribution, outputs=emotion_plot)
chatbot.launch()