Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,8 +59,8 @@ emotion_classes = pd.Categorical(df['emotion']).categories
|
|
59 |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
60 |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
61 |
|
62 |
-
# Load pre-trained
|
63 |
-
response_model_name = "
|
64 |
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
65 |
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
66 |
|
@@ -82,7 +82,7 @@ total_percentage = 100
|
|
82 |
emotion_history_file = 'emotion_history.json'
|
83 |
global conversation_history
|
84 |
conversation_history = []
|
85 |
-
max_history_length =
|
86 |
|
87 |
def load_historical_data(file_path=emotion_history_file):
|
88 |
if os.path.exists(file_path):
|
@@ -178,10 +178,10 @@ def generate_response(input_text, ai_emotion, conversation_history):
|
|
178 |
prompt = f"You are an AI assistant currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:"
|
179 |
|
180 |
# Add conversation history to the prompt
|
181 |
-
for entry in conversation_history[-
|
182 |
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
|
183 |
|
184 |
-
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=
|
185 |
|
186 |
# Adjust generation parameters based on emotion
|
187 |
temperature = 0.7
|
@@ -194,7 +194,7 @@ def generate_response(input_text, ai_emotion, conversation_history):
|
|
194 |
response_ids = response_model.generate(
|
195 |
inputs.input_ids,
|
196 |
attention_mask=inputs.attention_mask,
|
197 |
-
max_length=
|
198 |
num_return_sequences=1,
|
199 |
no_repeat_ngram_size=2,
|
200 |
do_sample=True,
|
@@ -254,6 +254,7 @@ def visualize_emotions():
|
|
254 |
plt.close()
|
255 |
|
256 |
return 'emotional_state.png'
|
|
|
257 |
def interactive_interface(input_text):
|
258 |
global conversation_history
|
259 |
try:
|
@@ -287,26 +288,28 @@ def interactive_interface(input_text):
|
|
287 |
|
288 |
emotion_visualization = visualize_emotions()
|
289 |
|
290 |
-
|
291 |
-
predicted_emotion,
|
292 |
-
ai_emotion,
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
response,
|
297 |
-
emotion_visualization
|
298 |
-
|
|
|
|
|
299 |
except Exception as e:
|
300 |
print(f"Error: {e}")
|
301 |
-
return
|
302 |
-
'unknown',
|
303 |
-
'neutral',
|
304 |
-
|
305 |
-
'[]
|
306 |
-
|
307 |
-
"I'm sorry, but I encountered an error and was unable to generate a response.",
|
308 |
-
'emotional_state.png'
|
309 |
-
|
310 |
|
311 |
# Create a Gradio interface
|
312 |
gr.Interface(
|
@@ -322,5 +325,5 @@ gr.Interface(
|
|
322 |
gr.Image(label="Emotional State Visualization")
|
323 |
],
|
324 |
title="Emotion-Aware AI Assistant",
|
325 |
-
description="Interact with an AI assistant that responds based on its emotional state."
|
326 |
).launch()
|
|
|
59 |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
60 |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
61 |
|
62 |
+
# Load pre-trained large language model and tokenizer for response generation with increased context window
|
63 |
+
response_model_name = "facebook/opt-5b"
|
64 |
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
65 |
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
66 |
|
|
|
82 |
emotion_history_file = 'emotion_history.json'
|
83 |
global conversation_history
|
84 |
conversation_history = []
|
85 |
+
max_history_length = 1000 # Increase the maximum history length
|
86 |
|
87 |
def load_historical_data(file_path=emotion_history_file):
|
88 |
if os.path.exists(file_path):
|
|
|
178 |
prompt = f"You are an AI assistant currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:"
|
179 |
|
180 |
# Add conversation history to the prompt
|
181 |
+
for entry in conversation_history[-100:]: # Use last 100 entries for context
|
182 |
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
|
183 |
|
184 |
+
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192)
|
185 |
|
186 |
# Adjust generation parameters based on emotion
|
187 |
temperature = 0.7
|
|
|
194 |
response_ids = response_model.generate(
|
195 |
inputs.input_ids,
|
196 |
attention_mask=inputs.attention_mask,
|
197 |
+
max_length=8192,
|
198 |
num_return_sequences=1,
|
199 |
no_repeat_ngram_size=2,
|
200 |
do_sample=True,
|
|
|
254 |
plt.close()
|
255 |
|
256 |
return 'emotional_state.png'
|
257 |
+
|
258 |
def interactive_interface(input_text):
|
259 |
global conversation_history
|
260 |
try:
|
|
|
288 |
|
289 |
emotion_visualization = visualize_emotions()
|
290 |
|
291 |
+
analysis_result = {
|
292 |
+
'predicted_user_emotion': predicted_emotion,
|
293 |
+
'ai_emotion': ai_emotion,
|
294 |
+
'sentiment_scores': sentiment_scores,
|
295 |
+
'entities': entities,
|
296 |
+
'text_complexity': text_complexity,
|
297 |
+
'response': response,
|
298 |
+
'emotion_visualization': emotion_visualization
|
299 |
+
}
|
300 |
+
|
301 |
+
return analysis_result
|
302 |
except Exception as e:
|
303 |
print(f"Error: {e}")
|
304 |
+
return {
|
305 |
+
'predicted_user_emotion': 'unknown',
|
306 |
+
'ai_emotion': 'neutral',
|
307 |
+
'sentiment_scores': {'compound': 0, 'neg': 0, 'neu': 1, 'pos': 0},
|
308 |
+
'entities': [],
|
309 |
+
'text_complexity': {'word_count': 0, 'sentence_count': 0, 'average_sentence_length': 0, 'polarity': 0, 'subjectivity': 0},
|
310 |
+
'response': "I'm sorry, but I encountered an error and was unable to generate a response.",
|
311 |
+
'emotion_visualization': 'emotional_state.png'
|
312 |
+
}
|
313 |
|
314 |
# Create a Gradio interface
|
315 |
gr.Interface(
|
|
|
325 |
gr.Image(label="Emotional State Visualization")
|
326 |
],
|
327 |
title="Emotion-Aware AI Assistant",
|
328 |
+
description="Interact with an AI assistant that responds based on its emotional state.",
|
329 |
).launch()
|