Sephfox commited on
Commit
12380c1
·
verified ·
1 Parent(s): 20e25d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -181
app.py CHANGED
@@ -41,23 +41,20 @@ emotions_target = pd.Categorical(df['emotion']).codes
41
  emotion_classes = pd.Categorical(df['emotion']).categories
42
 
43
  # Load pre-trained BERT model for emotion prediction
44
- emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
45
- emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
46
 
47
- # Lazy loading for the fine-tuned language model
48
  _finetuned_lm_tokenizer = None
49
  _finetuned_lm_model = None
50
 
51
-
52
  def get_finetuned_lm_model():
53
  global _finetuned_lm_tokenizer, _finetuned_lm_model
54
  if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
55
- finetuned_lm_model_name = "microsoft/DialoGPT-large" # Replace with your fine-tuned language model name
56
- _finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(finetuned_lm_model_name)
57
- _finetuned_lm_model = AutoModelForCausalLM.from_pretrained(finetuned_lm_model_name, device_map="auto", low_cpu_mem_usage=True)
58
  return _finetuned_lm_tokenizer, _finetuned_lm_model
59
 
60
-
61
  # Enhanced Emotional States
62
  emotions = {
63
  'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
@@ -65,7 +62,7 @@ emotions = {
65
  'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
66
  'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
67
  'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
68
- 'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
69
  'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
70
  'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
71
  'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
@@ -84,32 +81,19 @@ emotions = {
84
  total_percentage = 200
85
  emotion_history_file = 'emotion_history.json'
86
 
87
-
88
  def load_historical_data(file_path=emotion_history_file):
89
  if os.path.exists(file_path):
90
  with open(file_path, 'r') as file:
91
  return json.load(file)
92
  return []
93
 
94
-
95
  def save_historical_data(historical_data, file_path=emotion_history_file):
96
  with open(file_path, 'w') as file:
97
  json.dump(historical_data, file)
98
 
99
-
100
  emotion_history = load_historical_data()
101
 
102
-
103
  def update_emotion(emotion, percentage, intensity):
104
- """
105
- Updates the emotional state based on the provided emotion, percentage, and intensity.
106
-
107
- Args:
108
- emotion (str): Name of the emotion to update.
109
- percentage (float): Percentage change to apply to the emotion.
110
- intensity (float): Intensity value to update for the emotion.
111
- """
112
-
113
  emotions['ideal_state']['percentage'] -= percentage
114
  emotions[emotion]['percentage'] += percentage
115
  emotions[emotion]['intensity'] = intensity
@@ -118,48 +102,32 @@ def update_emotion(emotion, percentage, intensity):
118
  adjustment = total_percentage - total_current
119
  emotions['ideal_state']['percentage'] += adjustment
120
 
121
-
122
  def normalize_context(context):
123
- """
124
- Normalizes the context text by converting it to lowercase and removing whitespace.
125
-
126
- Args:
127
- context (str): The context text to normalize.
128
-
129
- Returns:
130
- str: The normalized context text.
131
- """
132
-
133
  return context.lower().strip()
134
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- # Improved Genetic Algorithm for Emotion Evolution with clear function definition
137
  def evolve_emotions():
138
- """
139
- Evolves the emotional states using a genetic algorithm to find an optimal balance.
140
-
141
- This function utilizes the DEAP library to implement a genetic algorithm. It aims to
142
- find a combination of emotional states that minimizes the following criteria:
143
-
144
- 1. Difference between the ideal state (100%) and its actual percentage.
145
- 2. Sum of all non-ideal emotional percentages.
146
- 3. Range of emotional intensities.
147
-
148
- The weights for these criteria can be adjusted in the `creator.create("FitnessMulti", ...)` line.
149
- """
150
-
151
- creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2)) # Weights for evaluation criteria
152
  creator.create("Individual", list, fitness=creator.FitnessMulti)
153
 
154
  toolbox = base.Toolbox()
155
  toolbox.register("attr_float", random.uniform, 0, 20)
156
  toolbox.register("attr_intensity", random.uniform, 0, 10)
157
  toolbox.register("individual", tools.initCycle, creator.Individual,
158
- (toolbox.attr_float,) * (len(emotions) - 1) + # Individual emotions
159
- (toolbox.attr_intensity,) * len(emotions) + # Intensities
160
  (lambda: 100,), n=1)
161
- toolbox.register("population", tools.initRepeat, list, toolbox.individual)
162
- toolbox.register("mate", tools.cxTwoPoint)
163
  toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
164
  toolbox.register("select", tools.selNSGA2)
165
  toolbox.register("evaluate", evaluate)
@@ -179,153 +147,73 @@ def evolve_emotions():
179
 
180
  emotions['ideal_state']['percentage'] = ideal_state
181
 
182
-
183
  def predict_emotion(context):
184
- """
185
- Predicts the emotion from the provided context using a pre-trained BERT model.
186
-
187
- Args:
188
- context (str): The context text for emotion prediction.
189
-
190
- Returns:
191
- str: The predicted emotion.
192
- """
193
-
194
  emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
195
  predictions = emotion_prediction_pipeline(context)
196
  emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
197
  emotion_pred = max(emotion_scores, key=emotion_scores.get)
198
  return emotion_pred
199
 
200
-
201
  def generate_text(prompt, emotion=None, max_length=100):
202
- """
203
- Generates text using a fine-tuned language model, optionally incorporating the specified emotion.
204
-
205
- Args:
206
- prompt (str): The starting prompt for text generation.
207
- emotion (str, optional): The emotion to consider during generation. Defaults to None.
208
- max_length (int, optional): The maximum length of the generated text. Defaults to 100.
209
-
210
- Returns:
211
- str: The generated text.
212
- """
213
-
214
  finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
215
- input_ids = finetuned_lm_tokenizer.encode(prompt, return_tensors='pt')
216
- attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
217
-
218
  if torch.cuda.is_available():
219
  input_ids = input_ids.cuda()
220
- attention_mask = attention_mask.cuda()
221
  finetuned_lm_model = finetuned_lm_model.cuda()
222
 
 
 
 
223
  if emotion:
224
- emotion_token = emotion_prediction_tokenizer.encode(emotion, add_special_tokens=False)
225
- input_ids = torch.cat((input_ids, torch.tensor(emotion_token).unsqueeze(0)), dim=1)
 
 
 
 
 
 
226
 
227
- outputs = finetuned_lm_model.generate(
228
- input_ids=input_ids,
229
- attention_mask=attention_mask,
230
  max_length=max_length,
231
- pad_token_id=finetuned_lm_tokenizer.eos_token_id,
232
  num_return_sequences=1,
233
- temperature=0.7,
234
- top_p=0.9,
235
- do_sample=True
 
 
 
236
  )
237
 
238
- return finetuned_lm_tokenizer.decode(outputs[0], skip_special_tokens=True)
239
-
240
-
241
- def optimize_ai_model(emotion_history):
242
- """
243
- Trains a Random Forest classifier to predict emotions based on historical data.
244
-
245
- This function is optional and can be used to improve the accuracy of emotion prediction
246
- over time by learning from past interactions.
247
-
248
- Args:
249
- emotion_history (list): A list of dictionaries containing context and emotion information.
250
-
251
- Returns:
252
- tuple: A tuple containing the trained classifier and its accuracy score (or None if insufficient data).
253
- """
254
-
255
- if len(emotion_history) < 2:
256
- return None, None
257
-
258
- contexts = [entry['context'] for entry in emotion_history]
259
- emotions = [entry['emotion'] for entry in emotion_history]
260
-
261
- encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
262
- X = encoder.fit_transform(np.array(contexts).reshape(-1, 1))
263
- y = np.array(pd.Categorical(emotions).codes)
264
- clf = RandomForestClassifier(n_estimators=100)
265
- clf.fit(X, y)
266
-
267
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
268
- accuracy = clf.score(X_test, y_test)
269
-
270
- return clf, accuracy
271
-
272
-
273
- def get_dominant_emotion():
274
- """
275
- Returns the emotion with the highest percentage.
276
-
277
- Returns:
278
- str: The emotion with the highest percentage.
279
- """
280
-
281
- dominant_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
282
- return dominant_emotion
283
-
284
-
285
- def respond_to_user(context):
286
- """
287
- Responds to the user based on the provided context.
288
-
289
- This function predicts the user's emotion from the context, generates a response that
290
- considers the user's emotional state, and updates the internal emotional states.
291
-
292
- Args:
293
- context (str): The user's input context.
294
-
295
- Returns:
296
- str: The AI's response to the user.
297
- """
298
-
299
- predicted_emotion = predict_emotion(context)
300
- dominant_emotion = get_dominant_emotion()
301
-
302
- response = f"You seem to be feeling {predicted_emotion}. "
303
-
304
- if predicted_emotion == dominant_emotion:
305
- response += f"I understand that you're feeling strongly about {predicted_emotion} right now. "
306
- else:
307
- response += f"Is there anything I can do to help you with {predicted_emotion}? "
308
-
309
- if dominant_emotion != 'ideal_state':
310
- adjustment_percentage = min(emotions[dominant_emotion]['percentage'] / 2, 10)
311
- update_emotion(dominant_emotion, -adjustment_percentage, 0)
312
-
313
- emotion_history.append({'context': context, 'emotion': predicted_emotion})
314
- save_historical_data(emotion_history)
315
-
316
- # Train the emotion prediction classifier if enough data is available
317
- trained_clf, accuracy = optimize_ai_model(emotion_history)
318
- if trained_clf:
319
- print(f"Emotion prediction model accuracy: {accuracy:.2f}")
320
-
321
- generated_text = generate_text(prompt=response, emotion=dominant_emotion)
322
  return generated_text
323
 
324
-
325
- interface = gr.Interface(respond_to_user, inputs="textbox", outputs="textbox", title="AI Assistant with Evolving Emotions", description="Talk to an AI that adapts to your emotions.")
326
- interface.launch()
327
-
328
- # Clean up memory usage
329
- del _finetuned_lm_tokenizer
330
- del _finetuned_lm_model
331
- gc.collect()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  emotion_classes = pd.Categorical(df['emotion']).categories
42
 
43
  # Load pre-trained BERT model for emotion prediction
44
+ emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
45
+ emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
46
 
47
+ # Lazy loading for the fine-tuned language model (DialoGPT)
48
  _finetuned_lm_tokenizer = None
49
  _finetuned_lm_model = None
50
 
 
51
  def get_finetuned_lm_model():
52
  global _finetuned_lm_tokenizer, _finetuned_lm_model
53
  if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
54
+ _finetuned_lm_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
55
+ _finetuned_lm_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium", device_map="auto", low_cpu_mem_usage=True)
 
56
  return _finetuned_lm_tokenizer, _finetuned_lm_model
57
 
 
58
  # Enhanced Emotional States
59
  emotions = {
60
  'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
 
62
  'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
63
  'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
64
  'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
65
+ 'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
66
  'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
67
  'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
68
  'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
 
81
  total_percentage = 200
82
  emotion_history_file = 'emotion_history.json'
83
 
 
84
  def load_historical_data(file_path=emotion_history_file):
85
  if os.path.exists(file_path):
86
  with open(file_path, 'r') as file:
87
  return json.load(file)
88
  return []
89
 
 
90
  def save_historical_data(historical_data, file_path=emotion_history_file):
91
  with open(file_path, 'w') as file:
92
  json.dump(historical_data, file)
93
 
 
94
  emotion_history = load_historical_data()
95
 
 
96
  def update_emotion(emotion, percentage, intensity):
 
 
 
 
 
 
 
 
 
97
  emotions['ideal_state']['percentage'] -= percentage
98
  emotions[emotion]['percentage'] += percentage
99
  emotions[emotion]['intensity'] = intensity
 
102
  adjustment = total_percentage - total_current
103
  emotions['ideal_state']['percentage'] += adjustment
104
 
 
105
  def normalize_context(context):
 
 
 
 
 
 
 
 
 
 
106
  return context.lower().strip()
107
 
108
+ def evaluate(individual):
109
+ emotion_values = individual[:len(emotions) - 1]
110
+ intensities = individual[-21:-1]
111
+ ideal_state = individual[-1]
112
+
113
+ ideal_diff = abs(100 - ideal_state)
114
+ sum_non_ideal = sum(emotion_values)
115
+ intensity_range = max(intensities) - min(intensities)
116
+
117
+ return ideal_diff, sum_non_ideal, intensity_range
118
 
 
119
  def evolve_emotions():
120
+ creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  creator.create("Individual", list, fitness=creator.FitnessMulti)
122
 
123
  toolbox = base.Toolbox()
124
  toolbox.register("attr_float", random.uniform, 0, 20)
125
  toolbox.register("attr_intensity", random.uniform, 0, 10)
126
  toolbox.register("individual", tools.initCycle, creator.Individual,
127
+ (toolbox.attr_float,) * (len(emotions) - 1) +
128
+ (toolbox.attr_intensity,) * len(emotions) +
129
  (lambda: 100,), n=1)
130
+ toolbox.register("mate", tools.cxTwoPoint)
 
131
  toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
132
  toolbox.register("select", tools.selNSGA2)
133
  toolbox.register("evaluate", evaluate)
 
147
 
148
  emotions['ideal_state']['percentage'] = ideal_state
149
 
 
150
  def predict_emotion(context):
 
 
 
 
 
 
 
 
 
 
151
  emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
152
  predictions = emotion_prediction_pipeline(context)
153
  emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
154
  emotion_pred = max(emotion_scores, key=emotion_scores.get)
155
  return emotion_pred
156
 
 
157
  def generate_text(prompt, emotion=None, max_length=100):
 
 
 
 
 
 
 
 
 
 
 
 
158
  finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
159
+ input_ids = finetuned_lm_tokenizer.encode(prompt + finetuned_lm_tokenizer.eos_token, return_tensors='pt')
160
+
 
161
  if torch.cuda.is_available():
162
  input_ids = input_ids.cuda()
 
163
  finetuned_lm_model = finetuned_lm_model.cuda()
164
 
165
+ attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
166
+
167
+ # Set up the emotion-specific generation parameters
168
  if emotion:
169
+ # You can adjust these parameters based on the emotion
170
+ temperature = 0.7
171
+ top_k = 50
172
+ top_p = 0.9
173
+ else:
174
+ temperature = 1.0
175
+ top_k = 0
176
+ top_p = 1.0
177
 
178
+ # Generate the response
179
+ output = finetuned_lm_model.generate(
180
+ input_ids,
181
  max_length=max_length,
 
182
  num_return_sequences=1,
183
+ no_repeat_ngram_size=2,
184
+ do_sample=True,
185
+ temperature=temperature,
186
+ top_k=top_k,
187
+ top_p=top_p,
188
+ attention_mask=attention_mask
189
  )
190
 
191
+ generated_text = finetuned_lm_tokenizer.decode(output[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  return generated_text
193
 
194
+ def respond_to_user(user_input, chat_history):
195
+ # Predict the emotion from the user input
196
+ emotion = predict_emotion(user_input)
197
+
198
+ # Update the emotional state
199
+ update_emotion(emotion, 5, random.uniform(0, 10))
200
+
201
+ # Generate a response considering the emotion
202
+ response = generate_text(user_input, emotion)
203
+
204
+ # Update chat history
205
+ chat_history.append((user_input, response))
206
+
207
+ return response, chat_history
208
+
209
+ # Gradio interface
210
+ iface = gr.Interface(
211
+ fn=respond_to_user,
212
+ inputs=["text", "state"],
213
+ outputs=["text", "state"],
214
+ title="Emotion-Aware Chatbot",
215
+ description="Chat with an AI that understands and responds to emotions.",
216
+ )
217
+
218
+ if __name__ == "__main__":
219
+ iface.launch()