Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
import warnings
|
2 |
-
|
3 |
-
# Suppress specific warnings from huggingface_hub
|
4 |
-
warnings.filterwarnings("ignore", category=FutureWarning, module="huggingface_hub.file_download")
|
5 |
-
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import os
|
@@ -14,7 +9,7 @@ from sklearn.model_selection import train_test_split
|
|
14 |
from sklearn.preprocessing import OneHotEncoder
|
15 |
from sklearn.neural_network import MLPClassifier
|
16 |
from deap import base, creator, tools, algorithms
|
17 |
-
from transformers import
|
18 |
import torch
|
19 |
|
20 |
# Initialize Example Emotions Dataset
|
@@ -226,9 +221,9 @@ def handle_idle_state():
|
|
226 |
|
227 |
# S.O.U.L. (Self-Organizing Universal Learning) Function
|
228 |
class SOUL:
|
229 |
-
def __init__(self, model_name='
|
230 |
-
self.tokenizer =
|
231 |
-
self.model =
|
232 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
233 |
self.model.to(self.device)
|
234 |
|
@@ -251,22 +246,21 @@ class SOUL:
|
|
251 |
return self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
252 |
|
253 |
def bridge_ai(self, prompt):
|
254 |
-
# Generate the response using
|
255 |
-
|
256 |
|
257 |
# Get the emotional response
|
258 |
-
emotional_response = get_emotional_response(
|
259 |
|
260 |
-
return
|
261 |
|
262 |
# Example usage of S.O.U.L. function
|
263 |
soul = SOUL()
|
264 |
|
265 |
def interact_with_soul(user_input):
|
266 |
-
|
267 |
-
return
|
268 |
|
269 |
-
# Gradio interface setup
|
270 |
iface = gr.Interface(
|
271 |
fn=interact_with_soul,
|
272 |
inputs="text",
|
@@ -275,5 +269,4 @@ iface = gr.Interface(
|
|
275 |
description="Enter a prompt to interact with the S.O.U.L AI, which will generate a response and provide an emotional analysis."
|
276 |
)
|
277 |
|
278 |
-
# Launch the interface
|
279 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
9 |
from sklearn.preprocessing import OneHotEncoder
|
10 |
from sklearn.neural_network import MLPClassifier
|
11 |
from deap import base, creator, tools, algorithms
|
12 |
+
from transformers import BloomForCausalLM, BloomTokenizerFast
|
13 |
import torch
|
14 |
|
15 |
# Initialize Example Emotions Dataset
|
|
|
221 |
|
222 |
# S.O.U.L. (Self-Organizing Universal Learning) Function
|
223 |
class SOUL:
|
224 |
+
def __init__(self, model_name='bigscience/bloom-1b1'):
|
225 |
+
self.tokenizer = BloomTokenizerFast.from_pretrained(model_name)
|
226 |
+
self.model = BloomForCausalLM.from_pretrained(model_name)
|
227 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
228 |
self.model.to(self.device)
|
229 |
|
|
|
246 |
return self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
247 |
|
248 |
def bridge_ai(self, prompt):
|
249 |
+
# Generate the response using BLOOM
|
250 |
+
bloom_response = self.generate_text(prompt)
|
251 |
|
252 |
# Get the emotional response
|
253 |
+
emotional_response = get_emotional_response(bloom_response)
|
254 |
|
255 |
+
return bloom_response, emotional_response
|
256 |
|
257 |
# Example usage of S.O.U.L. function
|
258 |
soul = SOUL()
|
259 |
|
260 |
def interact_with_soul(user_input):
|
261 |
+
bloom_response, emotional_response = soul.bridge_ai(user_input)
|
262 |
+
return bloom_response, emotional_response
|
263 |
|
|
|
264 |
iface = gr.Interface(
|
265 |
fn=interact_with_soul,
|
266 |
inputs="text",
|
|
|
269 |
description="Enter a prompt to interact with the S.O.U.L AI, which will generate a response and provide an emotional analysis."
|
270 |
)
|
271 |
|
|
|
272 |
iface.launch()
|