Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
emotion_history_file = 'emotion_history.json'
|
2 |
|
3 |
def load_historical_data(file_path=emotion_history_file):
|
@@ -142,7 +277,7 @@ def process_input(text):
|
|
142 |
|
143 |
predicted_emotion = emotion_classes[rf_prediction]
|
144 |
sentiment_score = isolation_score
|
145 |
-
|
146 |
bloom_generated_text = generate_text(normalized_text, model_type='bloom')
|
147 |
|
148 |
historical_data = load_historical_data()
|
|
|
1 |
+
import warnings
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import random
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.optim as optim
|
11 |
+
from torch.utils.data import DataLoader, IterableDataset
|
12 |
+
from sklearn.ensemble import IsolationForest, RandomForestClassifier
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
from sklearn.preprocessing import OneHotEncoder
|
15 |
+
from sklearn.neural_network import MLPClassifier
|
16 |
+
from deap import base, creator, tools, algorithms
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
|
18 |
+
import gc
|
19 |
+
import multiprocessing as mp
|
20 |
+
from joblib import Parallel, delayed
|
21 |
+
|
22 |
+
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
23 |
+
|
24 |
+
# Initialize Example Emotions Dataset
|
25 |
+
data = {
|
26 |
+
'context': [
|
27 |
+
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
|
28 |
+
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
|
29 |
+
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
|
30 |
+
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
|
31 |
+
'I am pessimistic', 'I feel bored', 'I am envious'
|
32 |
+
],
|
33 |
+
'emotion': [
|
34 |
+
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
|
35 |
+
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
|
36 |
+
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
|
37 |
+
]
|
38 |
+
}
|
39 |
+
df = pd.DataFrame(data)
|
40 |
+
|
41 |
+
# Encoding the contexts using One-Hot Encoding (memory-efficient)
|
42 |
+
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
|
43 |
+
contexts_encoded = encoder.fit_transform(df[['context']])
|
44 |
+
|
45 |
+
# Encoding emotions
|
46 |
+
emotions_target = pd.Categorical(df['emotion']).codes
|
47 |
+
emotion_classes = pd.Categorical(df['emotion']).categories
|
48 |
+
|
49 |
+
# Memory-efficient Neural Network with PyTorch
|
50 |
+
class MemoryEfficientNN(nn.Module):
|
51 |
+
def __init__(self, input_size, hidden_size, num_classes):
|
52 |
+
super(MemoryEfficientNN, self).__init__()
|
53 |
+
self.layers = nn.Sequential(
|
54 |
+
nn.Embedding(input_size, hidden_size),
|
55 |
+
nn.ReLU(),
|
56 |
+
nn.Dropout(0.2),
|
57 |
+
nn.Linear(hidden_size, hidden_size),
|
58 |
+
nn.ReLU(),
|
59 |
+
nn.Dropout(0.2),
|
60 |
+
nn.Linear(hidden_size, num_classes)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.layers(x.long())
|
65 |
+
|
66 |
+
# Memory-efficient dataset
|
67 |
+
class MemoryEfficientDataset(IterableDataset):
|
68 |
+
def __init__(self, X, y, batch_size):
|
69 |
+
self.X = X
|
70 |
+
self.y = torch.LongTensor(y) # Convert labels to long tensors
|
71 |
+
self.batch_size = batch_size
|
72 |
+
|
73 |
+
def __iter__(self):
|
74 |
+
for i in range(0, len(self.y), self.batch_size):
|
75 |
+
X_batch = self.X[i:i+self.batch_size].toarray()
|
76 |
+
y_batch = self.y[i:i+self.batch_size]
|
77 |
+
yield torch.FloatTensor(X_batch), y_batch
|
78 |
+
|
79 |
+
# Train Memory-Efficient Neural Network
|
80 |
+
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
81 |
+
input_size = X_train.shape[1]
|
82 |
+
hidden_size = 64
|
83 |
+
num_classes = len(emotion_classes)
|
84 |
+
|
85 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
86 |
+
model = MemoryEfficientNN(input_size, hidden_size, num_classes).to(device)
|
87 |
+
criterion = nn.CrossEntropyLoss()
|
88 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
89 |
+
|
90 |
+
train_dataset = MemoryEfficientDataset(X_train, y_train, batch_size=32)
|
91 |
+
train_loader = DataLoader(train_dataset, batch_size=None, num_workers=4, pin_memory=True)
|
92 |
+
|
93 |
+
num_epochs = 100
|
94 |
+
for epoch in range(num_epochs):
|
95 |
+
for batch_X, batch_y in train_loader:
|
96 |
+
batch_X, batch_y = batch_X.to(device, non_blocking=True), batch_y.to(device, non_blocking=True)
|
97 |
+
outputs = model(batch_X)
|
98 |
+
loss = criterion(outputs, batch_y)
|
99 |
+
optimizer.zero_grad()
|
100 |
+
loss.backward()
|
101 |
+
optimizer.step()
|
102 |
+
gc.collect() # Garbage collection after each epoch
|
103 |
+
|
104 |
+
# Ensemble with Random Forest (memory-efficient)
|
105 |
+
rf_model = RandomForestClassifier(n_estimators=50, random_state=42, n_jobs=-1)
|
106 |
+
rf_model.fit(X_train, y_train)
|
107 |
+
|
108 |
+
# Isolation Forest Anomaly Detection Model (memory-efficient)
|
109 |
+
isolation_forest = IsolationForest(contamination=0.1, random_state=42, n_jobs=-1, max_samples='auto')
|
110 |
+
isolation_forest.fit(X_train) # Fit the model before using it
|
111 |
+
|
112 |
+
# Enhanced Emotional States
|
113 |
+
emotions = {
|
114 |
+
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
115 |
+
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
|
116 |
+
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
117 |
+
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
118 |
+
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
|
119 |
+
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
|
120 |
+
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
121 |
+
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
122 |
+
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
123 |
+
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
124 |
+
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
|
125 |
+
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
|
126 |
+
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
|
127 |
+
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
|
128 |
+
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
|
129 |
+
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
|
130 |
+
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
|
131 |
+
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
|
132 |
+
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
|
133 |
+
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
|
134 |
+
}
|
135 |
+
total_percentage = 200
|
136 |
emotion_history_file = 'emotion_history.json'
|
137 |
|
138 |
def load_historical_data(file_path=emotion_history_file):
|
|
|
277 |
|
278 |
predicted_emotion = emotion_classes[rf_prediction]
|
279 |
sentiment_score = isolation_score
|
280 |
+
distilgpt3_generated_text = generate_text(normalized_text, model_type='distilgpt3')
|
281 |
bloom_generated_text = generate_text(normalized_text, model_type='bloom')
|
282 |
|
283 |
historical_data = load_historical_data()
|