Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ class MemoryEfficientNN(nn.Module):
|
|
67 |
class MemoryEfficientDataset(IterableDataset):
|
68 |
def __init__(self, X, y, batch_size):
|
69 |
self.X = X
|
70 |
-
self.y = y
|
71 |
self.batch_size = batch_size
|
72 |
|
73 |
def __iter__(self):
|
@@ -76,6 +76,12 @@ class MemoryEfficientDataset(IterableDataset):
|
|
76 |
y_batch = self.y[i:i+self.batch_size]
|
77 |
yield torch.FloatTensor(X_batch), torch.LongTensor(y_batch)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# Train Memory-Efficient Neural Network
|
80 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
81 |
input_size = X_train.shape[1]
|
|
|
67 |
class MemoryEfficientDataset(IterableDataset):
|
68 |
def __init__(self, X, y, batch_size):
|
69 |
self.X = X
|
70 |
+
self.y = y.astype(int) # Convert labels to integers
|
71 |
self.batch_size = batch_size
|
72 |
|
73 |
def __iter__(self):
|
|
|
76 |
y_batch = self.y[i:i+self.batch_size]
|
77 |
yield torch.FloatTensor(X_batch), torch.LongTensor(y_batch)
|
78 |
|
79 |
+
def __iter__(self):
|
80 |
+
for i in range(0, len(self.y), self.batch_size):
|
81 |
+
X_batch = self.X[i:i+self.batch_size].toarray()
|
82 |
+
y_batch = self.y[i:i+self.batch_size]
|
83 |
+
yield torch.FloatTensor(X_batch), torch.LongTensor(y_batch)
|
84 |
+
|
85 |
# Train Memory-Efficient Neural Network
|
86 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
87 |
input_size = X_train.shape[1]
|