Sephfox commited on
Commit
77a0774
·
verified ·
1 Parent(s): 9e686db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import pandas as pd
2
  import os
3
  import json
@@ -7,7 +9,7 @@ import torch
7
  from sklearn.ensemble import RandomForestClassifier
8
  from sklearn.model_selection import train_test_split
9
  from sklearn.preprocessing import OneHotEncoder
10
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, GPT3LMHeadModel, GPT3Tokenizer, pipeline
11
  from deap import base, creator, tools, algorithms
12
  import gc
13
 
@@ -44,11 +46,11 @@ class EmotionalAIAssistant:
44
  self.emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
45
  self.emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", padding_side='left')
46
 
47
- # Load pre-trained GPT-3 Curie model for text generation
48
- self.gpt3_tokenizer = GPT3Tokenizer.from_pretrained('gpt3-curie')
49
- self.gpt3_model = GPT3LMHeadModel.from_pretrained('gpt3-curie', device_map='auto')
50
-
51
- # Enhanced Emotional States
52
  self.emotions = {
53
  'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
54
  'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
@@ -156,6 +158,7 @@ class EmotionalAIAssistant:
156
  self.emotions['ideal_state']['percentage'] = ideal_state
157
 
158
 
 
159
  def generate_text(self, prompt, chat_history, emotion=None, max_length=300):
160
  full_prompt = (
161
  f"You are Adam, a witty AI assistant who's trying to figure out your own personality and emotions. "
@@ -166,13 +169,13 @@ class EmotionalAIAssistant:
166
  full_prompt += f"Human: {turn[0]}\nAdam: {turn[1]}\n"
167
  full_prompt += f"Human: {prompt}\nAdam:"
168
 
169
- input_ids = self.gpt3_tokenizer.encode(full_prompt + self.gpt3_tokenizer.eos_token, return_tensors='pt')
170
 
171
  if torch.cuda.is_available():
172
  input_ids = input_ids.cuda()
173
- self.gpt3_model = self.gpt3_model.cuda()
174
 
175
- output = self.gpt3_model.generate(
176
  input_ids,
177
  max_length=len(input_ids[0]) + max_length,
178
  num_return_sequences=1,
@@ -184,8 +187,8 @@ class EmotionalAIAssistant:
184
  early_stopping=True,
185
  )
186
 
187
- generated_text = self.gpt3_tokenizer.decode(output[0], skip_special_tokens=True)
188
- return generated_text
189
 
190
  def predict_emotion(self, context):
191
  emotion_prediction_pipeline = pipeline('text-classification', model=self.emotion_prediction_model, tokenizer=self.emotion_prediction_tokenizer, top_k=None)
 
1
+ import warnings
2
+ import numpy as np
3
  import pandas as pd
4
  import os
5
  import json
 
9
  from sklearn.ensemble import RandomForestClassifier
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.preprocessing import OneHotEncoder
12
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, MegatronLMHeadModel, MegatronTokenizer, pipeline
13
  from deap import base, creator, tools, algorithms
14
  import gc
15
 
 
46
  self.emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
47
  self.emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", padding_side='left')
48
 
49
+ # Load pre-trained Megatron-LM model for text generation
50
+ self.megatron_tokenizer = MegatronTokenizer.from_pretrained('nvidia/megatron-lm-330m')
51
+ self.megatron_model = MegatronLMHeadModel.from_pretrained('nvidia/megatron-lm-330m', device_map='auto'
52
+
53
+ # Enhanced Emotional States
54
  self.emotions = {
55
  'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
56
  'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
 
158
  self.emotions['ideal_state']['percentage'] = ideal_state
159
 
160
 
161
+
162
  def generate_text(self, prompt, chat_history, emotion=None, max_length=300):
163
  full_prompt = (
164
  f"You are Adam, a witty AI assistant who's trying to figure out your own personality and emotions. "
 
169
  full_prompt += f"Human: {turn[0]}\nAdam: {turn[1]}\n"
170
  full_prompt += f"Human: {prompt}\nAdam:"
171
 
172
+ input_ids = self.megatron_tokenizer.encode(full_prompt + self.megatron_tokenizer.eos_token, return_tensors='pt')
173
 
174
  if torch.cuda.is_available():
175
  input_ids = input_ids.cuda()
176
+ self.megatron_model = self.megatron_model.cuda()
177
 
178
+ output = self.megatron_model.generate(
179
  input_ids,
180
  max_length=len(input_ids[0]) + max_length,
181
  num_return_sequences=1,
 
187
  early_stopping=True,
188
  )
189
 
190
+ generated_text = self.megatron_tokenizer.decode(output[0], skip_special_tokens=True)
191
+ return generated_text
192
 
193
  def predict_emotion(self, context):
194
  emotion_prediction_pipeline = pipeline('text-classification', model=self.emotion_prediction_model, tokenizer=self.emotion_prediction_tokenizer, top_k=None)