Sephfox commited on
Commit
9473e59
·
verified ·
1 Parent(s): 6193f33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -5,19 +5,19 @@ import os
5
  import json
6
  import random
7
  import gradio as gr
 
 
 
 
8
  from sklearn.ensemble import IsolationForest, RandomForestClassifier
9
  from sklearn.model_selection import train_test_split
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
12
  from deap import base, creator, tools, algorithms
13
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
14
- import torch
15
- import torch.nn as nn
16
- import torch.optim as optim
17
- from torch.utils.data import DataLoader, TensorDataset, IterableDataset
18
  import multiprocessing as mp
19
  from joblib import Parallel, delayed
20
- import gc
21
 
22
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
23
 
@@ -233,8 +233,10 @@ def generate_text(prompt, max_length=100):
233
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
234
  return generated_text
235
 
236
- sentiment_pipeline = pipeline("sentiment-analysis", model='distilbert-base-uncased-finetuned-sst-2-english', device_map="auto")
237
-
 
 
238
  def get_sentiment(text):
239
  result = sentiment_pipeline(text)[0]
240
  return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
@@ -288,3 +290,4 @@ iface = gr.Interface(
288
  )
289
 
290
  iface.launch()
 
 
5
  import json
6
  import random
7
  import gradio as gr
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.optim as optim
11
+ from torch.utils.data import DataLoader, TensorDataset, IterableDataset
12
  from sklearn.ensemble import IsolationForest, RandomForestClassifier
13
  from sklearn.model_selection import train_test_split
14
  from sklearn.preprocessing import OneHotEncoder
15
  from sklearn.neural_network import MLPClassifier
16
  from deap import base, creator, tools, algorithms
17
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
18
+ import gc
 
 
 
19
  import multiprocessing as mp
20
  from joblib import Parallel, delayed
 
21
 
22
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
23
 
 
233
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
234
  return generated_text
235
 
236
+ model_name = "distilbert-base-uncased-finetuned-sst-2-english"
237
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
238
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
239
+ sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
240
  def get_sentiment(text):
241
  result = sentiment_pipeline(text)[0]
242
  return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
 
290
  )
291
 
292
  iface.launch()
293
+