Sephfox commited on
Commit
a6dbe30
·
verified ·
1 Parent(s): a0538bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -67
app.py CHANGED
@@ -5,17 +5,18 @@ import os
5
  import json
6
  import random
7
  import gradio as gr
8
- from sklearn.ensemble import IsolationForest, RandomForestClassifier, GradientBoostingClassifier
9
- from sklearn.model_selection import train_test_split, GridSearchCV
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
12
- from sklearn.metrics import accuracy_score
13
  from deap import base, creator, tools, algorithms
14
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
15
  import torch
16
  import torch.nn as nn
17
  import torch.optim as optim
18
  from torch.utils.data import DataLoader, TensorDataset
 
 
19
 
20
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
21
 
@@ -37,12 +38,12 @@ data = {
37
  df = pd.DataFrame(data)
38
 
39
  # Encoding the contexts using One-Hot Encoding
40
- encoder = OneHotEncoder(handle_unknown='ignore')
41
- contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
42
 
43
  # Encoding emotions
44
- emotions_target = df['emotion'].astype('category').cat.codes
45
- emotion_classes = df['emotion'].astype('category').cat.categories
46
 
47
  # Advanced Neural Network with PyTorch
48
  class AdvancedNN(nn.Module):
@@ -64,44 +65,34 @@ class AdvancedNN(nn.Module):
64
 
65
  # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
67
-
68
- # Convert to dense array if it's a sparse matrix, otherwise leave as is
69
- X_train = X_train.toarray() if hasattr(X_train, 'toarray') else X_train
70
- X_test = X_test.toarray() if hasattr(X_test, 'toarray') else X_test
71
-
72
- # Ensure y_train and y_test are numpy arrays
73
- y_train = y_train.to_numpy() if hasattr(y_train, 'to_numpy') else np.array(y_train)
74
- y_test = y_test.to_numpy() if hasattr(y_test, 'to_numpy') else np.array(y_test)
75
-
76
  input_size = X_train.shape[1]
77
  hidden_size = 64
78
  num_classes = len(emotion_classes)
79
 
80
- model = AdvancedNN(input_size, hidden_size, num_classes)
 
81
  criterion = nn.CrossEntropyLoss()
82
  optimizer = optim.Adam(model.parameters(), lr=0.001)
83
 
84
- train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
85
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
86
 
87
- model = AdvancedNN(input_size, hidden_size, num_classes)
88
- criterion = nn.CrossEntropyLoss()
89
- optimizer = optim.Adam(model.parameters(), lr=0.001)
90
-
91
- train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
92
- train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
93
-
94
- # Ensemble with Random Forest and Gradient Boosting
95
- rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
96
- gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
97
-
98
  rf_model.fit(X_train, y_train)
99
- gb_model.fit(X_train, y_train)
100
 
101
  # Isolation Forest Anomaly Detection Model
102
- historical_data = np.array([model(torch.FloatTensor(contexts_encoded)).argmax(1).numpy()]).T
103
- isolation_forest = IsolationForest(contamination=0.1, random_state=42)
104
- isolation_forest.fit(historical_data)
105
 
106
  # Enhanced Emotional States
107
  emotions = {
@@ -144,7 +135,8 @@ def save_historical_data(historical_data, file_path=emotion_history_file):
144
  with open(file_path, 'w') as file:
145
  json.dump(historical_data, file)
146
 
147
- emotion_history = load_historical_data
 
148
  def update_emotion(emotion, percentage, intensity):
149
  emotions['ideal_state']['percentage'] -= percentage
150
  emotions[emotion]['percentage'] += percentage
@@ -157,16 +149,16 @@ def update_emotion(emotion, percentage, intensity):
157
  def normalize_context(context):
158
  return context.lower().strip()
159
 
160
- # Advanced Genetic Algorithm for Emotion Evolution
161
- def evolve_emotions():
162
- def evaluate(individual):
163
- ideal_state = individual[-1]
164
- other_emotions = individual[:-1]
165
- intensities = individual[-21:-1]
166
- return (abs(ideal_state - 100),
167
- sum(other_emotions),
168
- max(intensities) - min(intensities))
169
 
 
170
  creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
171
  creator.create("Individual", list, fitness=creator.FitnessMulti)
172
 
@@ -180,7 +172,9 @@ def evolve_emotions():
180
  n=1)
181
  toolbox.register("population", tools.initRepeat, list, toolbox.individual)
182
 
183
- toolbox.register("evaluate", evaluate)
 
 
184
  toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=120, eta=20.0)
185
  toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=120, eta=20.0, indpb=0.1)
186
  toolbox.register("select", tools.selNSGA2)
@@ -190,6 +184,8 @@ def evolve_emotions():
190
  algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=100,
191
  cxpb=0.7, mutpb=0.3, ngen=50, verbose=False)
192
 
 
 
193
  best_individual = tools.selBest(population, k=1)[0]
194
 
195
  for idx, emotion in enumerate(emotions.keys()):
@@ -202,24 +198,25 @@ def evolve_emotions():
202
  # Initialize the pre-trained language model (BLOOM-1b7)
203
  model_name = 'bigscience/bloom-1b7'
204
  tokenizer = AutoTokenizer.from_pretrained(model_name)
205
- lm_model = AutoModelForCausalLM.from_pretrained(model_name)
206
 
207
  def generate_text(prompt, max_length=150):
208
- input_ids = tokenizer.encode(prompt, return_tensors='pt')
209
- output = lm_model.generate(
210
- input_ids,
211
- max_length=max_length,
212
- num_return_sequences=1,
213
- no_repeat_ngram_size=2,
214
- do_sample=True,
215
- top_k=50,
216
- top_p=0.95,
217
- temperature=0.7
218
- )
 
219
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
220
  return generated_text
221
 
222
- sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer)
223
 
224
  def get_sentiment(text):
225
  result = sentiment_pipeline(text)[0]
@@ -227,29 +224,28 @@ def get_sentiment(text):
227
 
228
  def get_emotional_response(context):
229
  context = normalize_context(context)
230
- context_encoded = encoder.transform([[context]]).toarray()
231
 
232
- # Advanced NN prediction
233
- nn_output = model(torch.FloatTensor(context_encoded))
234
- nn_prediction = nn_output.argmax(1).item()
 
235
 
236
- # Ensemble predictions
237
  rf_prediction = rf_model.predict(context_encoded)[0]
238
- gb_prediction = gb_model.predict(context_encoded)[0]
239
 
240
  # Weighted ensemble
241
- ensemble_prediction = (0.4 * nn_prediction + 0.3 * rf_prediction + 0.3 * gb_prediction)
242
  predicted_emotion = emotion_classes[int(round(ensemble_prediction))]
243
 
244
  # Anomaly detection
245
- anomaly_score = isolation_forest.decision_function(np.array([[nn_prediction]]))
246
  is_anomaly = anomaly_score < 0
247
 
248
  # Calculate emotion intensity based on model confidence
249
  nn_proba = torch.softmax(nn_output, dim=1).max().item()
250
  rf_proba = rf_model.predict_proba(context_encoded).max()
251
- gb_proba = gb_model.predict_proba(context_encoded).max()
252
- intensity = (nn_proba + rf_proba + gb_proba) / 3 * 10 # Scale to 0-10
253
 
254
  update_emotion(predicted_emotion, 20, intensity)
255
  evolve_emotions()
 
5
  import json
6
  import random
7
  import gradio as gr
8
+ from sklearn.ensemble import IsolationForest, RandomForestClassifier
9
+ from sklearn.model_selection import train_test_split
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
 
12
  from deap import base, creator, tools, algorithms
13
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
14
  import torch
15
  import torch.nn as nn
16
  import torch.optim as optim
17
  from torch.utils.data import DataLoader, TensorDataset
18
+ import multiprocessing as mp
19
+ from joblib import Parallel, delayed
20
 
21
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
22
 
 
38
  df = pd.DataFrame(data)
39
 
40
  # Encoding the contexts using One-Hot Encoding
41
+ encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
42
+ contexts_encoded = encoder.fit_transform(df[['context']])
43
 
44
  # Encoding emotions
45
+ emotions_target = df['emotion'].astype('category').cat.codes.values
46
+ emotion_classes = df['emotion'].astype('category').cat.categories.values
47
 
48
  # Advanced Neural Network with PyTorch
49
  class AdvancedNN(nn.Module):
 
65
 
66
  # Train Advanced Neural Network
67
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
 
 
 
 
 
 
 
 
 
68
  input_size = X_train.shape[1]
69
  hidden_size = 64
70
  num_classes = len(emotion_classes)
71
 
72
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
73
+ model = AdvancedNN(input_size, hidden_size, num_classes).to(device)
74
  criterion = nn.CrossEntropyLoss()
75
  optimizer = optim.Adam(model.parameters(), lr=0.001)
76
 
77
+ train_dataset = TensorDataset(torch.FloatTensor(X_train).to(device), torch.LongTensor(y_train).to(device))
78
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
79
 
80
+ num_epochs = 100
81
+ for epoch in range(num_epochs):
82
+ for batch_X, batch_y in train_loader:
83
+ outputs = model(batch_X)
84
+ loss = criterion(outputs, batch_y)
85
+ optimizer.zero_grad()
86
+ loss.backward()
87
+ optimizer.step()
88
+
89
+ # Ensemble with Random Forest
90
+ rf_model = RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1)
91
  rf_model.fit(X_train, y_train)
 
92
 
93
  # Isolation Forest Anomaly Detection Model
94
+ isolation_forest = IsolationForest(contamination=0.1, random_state=42, n_jobs=-1)
95
+ isolation_forest.fit(X_train)
 
96
 
97
  # Enhanced Emotional States
98
  emotions = {
 
135
  with open(file_path, 'w') as file:
136
  json.dump(historical_data, file)
137
 
138
+ emotion_history = load_historical_data()
139
+
140
  def update_emotion(emotion, percentage, intensity):
141
  emotions['ideal_state']['percentage'] -= percentage
142
  emotions[emotion]['percentage'] += percentage
 
149
  def normalize_context(context):
150
  return context.lower().strip()
151
 
152
+ # Parallel genetic algorithm for emotion evolution
153
+ def parallel_evaluate(individual):
154
+ ideal_state = individual[-1]
155
+ other_emotions = individual[:-1]
156
+ intensities = individual[-21:-1]
157
+ return (abs(ideal_state - 100),
158
+ sum(other_emotions),
159
+ max(intensities) - min(intensities))
 
160
 
161
+ def evolve_emotions():
162
  creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
163
  creator.create("Individual", list, fitness=creator.FitnessMulti)
164
 
 
172
  n=1)
173
  toolbox.register("population", tools.initRepeat, list, toolbox.individual)
174
 
175
+ pool = mp.Pool()
176
+ toolbox.register("map", pool.map)
177
+ toolbox.register("evaluate", parallel_evaluate)
178
  toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=120, eta=20.0)
179
  toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=120, eta=20.0, indpb=0.1)
180
  toolbox.register("select", tools.selNSGA2)
 
184
  algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=100,
185
  cxpb=0.7, mutpb=0.3, ngen=50, verbose=False)
186
 
187
+ pool.close()
188
+
189
  best_individual = tools.selBest(population, k=1)[0]
190
 
191
  for idx, emotion in enumerate(emotions.keys()):
 
198
  # Initialize the pre-trained language model (BLOOM-1b7)
199
  model_name = 'bigscience/bloom-1b7'
200
  tokenizer = AutoTokenizer.from_pretrained(model_name)
201
+ lm_model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
202
 
203
  def generate_text(prompt, max_length=150):
204
+ input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
205
+ with torch.no_grad():
206
+ output = lm_model.generate(
207
+ input_ids,
208
+ max_length=max_length,
209
+ num_return_sequences=1,
210
+ no_repeat_ngram_size=2,
211
+ do_sample=True,
212
+ top_k=50,
213
+ top_p=0.95,
214
+ temperature=0.7
215
+ )
216
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
217
  return generated_text
218
 
219
+ sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
220
 
221
  def get_sentiment(text):
222
  result = sentiment_pipeline(text)[0]
 
224
 
225
  def get_emotional_response(context):
226
  context = normalize_context(context)
227
+ context_encoded = encoder.transform([[context]])
228
 
229
+ # Neural network prediction
230
+ with torch.no_grad():
231
+ nn_output = model(torch.FloatTensor(context_encoded).to(device))
232
+ nn_prediction = nn_output.argmax(1).item()
233
 
234
+ # Random Forest prediction
235
  rf_prediction = rf_model.predict(context_encoded)[0]
 
236
 
237
  # Weighted ensemble
238
+ ensemble_prediction = (0.6 * nn_prediction + 0.4 * rf_prediction)
239
  predicted_emotion = emotion_classes[int(round(ensemble_prediction))]
240
 
241
  # Anomaly detection
242
+ anomaly_score = isolation_forest.decision_function(context_encoded)
243
  is_anomaly = anomaly_score < 0
244
 
245
  # Calculate emotion intensity based on model confidence
246
  nn_proba = torch.softmax(nn_output, dim=1).max().item()
247
  rf_proba = rf_model.predict_proba(context_encoded).max()
248
+ intensity = (nn_proba + rf_proba) / 2 * 10 # Scale to 0-10
 
249
 
250
  update_emotion(predicted_emotion, 20, intensity)
251
  evolve_emotions()