Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,113 +21,135 @@ nltk.download('vader_lexicon', quiet=True)
|
|
21 |
# --- Emotion Analyzer ---
|
22 |
class EmotionalAnalyzer:
|
23 |
def __init__(self):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
31 |
self.sia = SentimentIntensityAnalyzer()
|
32 |
|
33 |
def predict_emotion(self, text):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def analyze(self, text):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
def plot_emotions(self):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
# --- Text Completion LLM ---
|
75 |
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
76 |
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
77 |
|
78 |
def generate_completion(message, temperature, max_length):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
97 |
|
98 |
# --- Emotion-Aware LLM Response ---
|
99 |
def emotion_aware_response(input_text):
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
f"Emotion: {results['emotion']}\n"
|
126 |
-
f"VADER: {results['vader']}\n"
|
127 |
-
f"TextBlob: {results['textblob']}\n\n"
|
128 |
-
f"LLM Response:\n{response}"
|
129 |
-
)
|
130 |
-
return summary, image_path
|
131 |
|
132 |
# --- Gradio Interface ---
|
133 |
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
|
|
|
21 |
# --- Emotion Analyzer ---
|
22 |
class EmotionalAnalyzer:
|
23 |
def __init__(self):
|
24 |
+
try:
|
25 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
26 |
+
"bhadresh-savani/distilbert-base-uncased-emotion"
|
27 |
+
)
|
28 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
"bhadresh-savani/distilbert-base-uncased-emotion"
|
30 |
+
)
|
31 |
+
except Exception:
|
32 |
+
self.model = None
|
33 |
+
self.tokenizer = None
|
34 |
+
|
35 |
self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
36 |
self.sia = SentimentIntensityAnalyzer()
|
37 |
|
38 |
def predict_emotion(self, text):
|
39 |
+
try:
|
40 |
+
if self.model is None or self.tokenizer is None:
|
41 |
+
raise ValueError("Model or tokenizer not initialized properly.")
|
42 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = self.model(**inputs)
|
45 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
46 |
+
return self.labels[torch.argmax(probs).item()]
|
47 |
+
except Exception:
|
48 |
+
return "Unknown"
|
49 |
|
50 |
def analyze(self, text):
|
51 |
+
try:
|
52 |
+
vader_scores = self.sia.polarity_scores(text)
|
53 |
+
blob = TextBlob(text)
|
54 |
+
blob_data = {
|
55 |
+
"polarity": blob.sentiment.polarity,
|
56 |
+
"subjectivity": blob.sentiment.subjectivity,
|
57 |
+
"word_count": len(blob.words),
|
58 |
+
"sentence_count": len(blob.sentences),
|
59 |
+
}
|
60 |
+
return {
|
61 |
+
"emotion": self.predict_emotion(text),
|
62 |
+
"vader": vader_scores,
|
63 |
+
"textblob": blob_data,
|
64 |
+
}
|
65 |
+
except Exception:
|
66 |
+
return {"emotion": "Unknown", "vader": {}, "textblob": {}}
|
67 |
|
68 |
def plot_emotions(self):
|
69 |
+
try:
|
70 |
+
simulated_emotions = {
|
71 |
+
"joy": random.randint(10, 30),
|
72 |
+
"sadness": random.randint(5, 20),
|
73 |
+
"anger": random.randint(10, 25),
|
74 |
+
"fear": random.randint(5, 15),
|
75 |
+
"love": random.randint(10, 30),
|
76 |
+
"surprise": random.randint(5, 20),
|
77 |
+
}
|
78 |
+
df = pd.DataFrame(list(simulated_emotions.items()), columns=["Emotion", "Percentage"])
|
79 |
+
plt.figure(figsize=(8, 4))
|
80 |
+
sns.barplot(x="Emotion", y="Percentage", data=df)
|
81 |
+
plt.title("Simulated Emotional State")
|
82 |
+
plt.tight_layout()
|
83 |
+
path = "emotions.png"
|
84 |
+
plt.savefig(path)
|
85 |
+
plt.close()
|
86 |
+
return path
|
87 |
+
except Exception:
|
88 |
+
return None
|
89 |
|
90 |
# --- Text Completion LLM ---
|
91 |
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
92 |
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
93 |
|
94 |
def generate_completion(message, temperature, max_length):
|
95 |
+
try:
|
96 |
+
inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
|
97 |
+
input_ids = inputs["input_ids"]
|
98 |
+
current_text = message
|
99 |
+
|
100 |
+
for _ in range(max_length - input_ids.shape[1]):
|
101 |
+
with torch.no_grad():
|
102 |
+
outputs = model(input_ids)
|
103 |
+
logits = outputs.logits[:, -1, :] / temperature
|
104 |
+
probs = torch.softmax(logits, dim=-1)
|
105 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
106 |
+
|
107 |
+
if next_token.item() == tokenizer.eos_token_id:
|
108 |
+
break
|
109 |
+
|
110 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
111 |
+
new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
|
112 |
+
current_text += new_token_text
|
113 |
+
return current_text
|
114 |
+
except Exception:
|
115 |
+
return "Error generating text."
|
116 |
|
117 |
# --- Emotion-Aware LLM Response ---
|
118 |
def emotion_aware_response(input_text):
|
119 |
+
try:
|
120 |
+
analyzer = EmotionalAnalyzer()
|
121 |
+
results = analyzer.analyze(input_text)
|
122 |
+
image_path = analyzer.plot_emotions()
|
123 |
+
|
124 |
+
prompt = (
|
125 |
+
f"Input: {input_text}\n"
|
126 |
+
f"Detected Emotion: {results['emotion']}\n"
|
127 |
+
f"VADER Scores: {results['vader']}\n"
|
128 |
+
f"Respond thoughtfully and emotionally aware:"
|
129 |
+
)
|
130 |
+
|
131 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
132 |
+
with torch.no_grad():
|
133 |
+
output_ids = model.generate(
|
134 |
+
inputs.input_ids,
|
135 |
+
max_length=512,
|
136 |
+
do_sample=True,
|
137 |
+
temperature=0.7,
|
138 |
+
top_k=50,
|
139 |
+
top_p=0.95,
|
140 |
+
pad_token_id=tokenizer.eos_token_id
|
141 |
+
)
|
142 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
143 |
+
|
144 |
+
summary = (
|
145 |
+
f"Emotion: {results['emotion']}\n"
|
146 |
+
f"VADER: {results['vader']}\n"
|
147 |
+
f"TextBlob: {results['textblob']}\n\n"
|
148 |
+
f"LLM Response:\n{response}"
|
149 |
)
|
150 |
+
return summary, image_path
|
151 |
+
except Exception:
|
152 |
+
return "Error processing emotion-aware response", None
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
# --- Gradio Interface ---
|
155 |
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
|