Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -135,8 +135,7 @@ emotions = {
|
|
135 |
total_percentage = 200
|
136 |
default_percentage = total_percentage / len(emotions)
|
137 |
for emotion in emotions:
|
138 |
-
emotions[emotion]['
|
139 |
-
emotion_history_file = 'emotion_history.json'
|
140 |
|
141 |
def load_historical_data(file_path=emotion_history_file):
|
142 |
if os.path.exists(file_path):
|
@@ -203,6 +202,71 @@ def evolve_emotions():
|
|
203 |
|
204 |
emotions['ideal_state']['percentage'] = ideal_state
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
def process_input(text):
|
207 |
try:
|
208 |
normalized_text = normalize_context(text)
|
@@ -214,23 +278,25 @@ def process_input(text):
|
|
214 |
|
215 |
predicted_emotion = emotion_classes[rf_prediction]
|
216 |
sentiment_score = isolation_score
|
217 |
-
|
|
|
218 |
|
219 |
historical_data = load_historical_data()
|
220 |
historical_data.append({
|
221 |
'context': text,
|
222 |
'predicted_emotion': predicted_emotion,
|
223 |
'sentiment_score': sentiment_score,
|
224 |
-
'
|
|
|
225 |
})
|
226 |
save_historical_data(historical_data)
|
227 |
|
228 |
-
return predicted_emotion, sentiment_score,
|
229 |
|
230 |
except Exception as e:
|
231 |
error_message = f"An error occurred: {str(e)}"
|
232 |
print(error_message) # Logging the error
|
233 |
-
return error_message, error_message, error_message
|
234 |
|
235 |
iface = gr.Interface(
|
236 |
fn=process_input,
|
@@ -238,9 +304,10 @@ iface = gr.Interface(
|
|
238 |
outputs=[
|
239 |
gr.Textbox(label="Emotional Response"),
|
240 |
gr.Textbox(label="Sentiment Response"),
|
241 |
-
gr.Textbox(label="Generated Text")
|
|
|
242 |
],
|
243 |
live=True
|
244 |
)
|
245 |
|
246 |
-
iface.launch(share=True)
|
|
|
135 |
total_percentage = 200
|
136 |
default_percentage = total_percentage / len(emotions)
|
137 |
for emotion in emotions:
|
138 |
+
emotions[emotion]['emotion_history_file = 'emotion_history.json'
|
|
|
139 |
|
140 |
def load_historical_data(file_path=emotion_history_file):
|
141 |
if os.path.exists(file_path):
|
|
|
202 |
|
203 |
emotions['ideal_state']['percentage'] = ideal_state
|
204 |
|
205 |
+
# Lazy loading for the language models
|
206 |
+
_bloom_tokenizer = None
|
207 |
+
_bloom_lm_model = None
|
208 |
+
def get_bloom_model():
|
209 |
+
global _bloom_tokenizer, _bloom_lm_model
|
210 |
+
if _bloom_tokenizer is None or _bloom_lm_model is None:
|
211 |
+
bloom_model_name = 'bigscience/bloom-1b7'
|
212 |
+
_bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
|
213 |
+
_bloom_lm_model = AutoModelForCausalLM.from_pretrained(bloom_model_name, device_map="auto", low_cpu_mem_usage=True)
|
214 |
+
return _bloom_tokenizer, _bloom_lm_model
|
215 |
+
|
216 |
+
_gpt_tokenizer = None
|
217 |
+
_gpt_lm_model = None
|
218 |
+
def get_gpt_model():
|
219 |
+
global _gpt_tokenizer, _gpt_lm_model
|
220 |
+
if _gpt_tokenizer is None or _gpt_lm_model is None:
|
221 |
+
gpt_model_name = 'gpt2-medium'
|
222 |
+
_gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
|
223 |
+
_gpt_lm_model = AutoModelForCausalLM.from_pretrained(gpt_model_name, device_map="auto", low_cpu_mem_usage=True)
|
224 |
+
return _gpt_tokenizer, _gpt_lm_model
|
225 |
+
|
226 |
+
def generate_text(prompt, max_length=100, model_type='bloom'):
|
227 |
+
if model_type == 'bloom':
|
228 |
+
bloom_tokenizer, bloom_lm_model = get_bloom_model()
|
229 |
+
input_ids = bloom_tokenizer.encode(prompt, return_tensors='pt').to(bloom_lm_model.device)
|
230 |
+
with torch.no_grad():
|
231 |
+
output = bloom_lm_model.generate(
|
232 |
+
input_ids,
|
233 |
+
max_length=max_length,
|
234 |
+
num_return_sequences=1,
|
235 |
+
no_repeat_ngram_size=2,
|
236 |
+
do_sample=True,
|
237 |
+
top_k=50,
|
238 |
+
top_p=0.95,
|
239 |
+
temperature=0.7
|
240 |
+
)
|
241 |
+
generated_text = bloom_tokenizer.decode(output[0], skip_special_tokens=True)
|
242 |
+
elif model_type == 'gpt':
|
243 |
+
gpt_tokenizer, gpt_lm_model = get_gpt_model()
|
244 |
+
input_ids = gpt_tokenizer.encode(prompt, return_tensors='pt').to(gpt_lm_model.device)
|
245 |
+
with torch.no_grad():
|
246 |
+
output = gpt_lm_model.generate(
|
247 |
+
input_ids,
|
248 |
+
max_length=max_length,
|
249 |
+
num_return_sequences=1,
|
250 |
+
no_repeat_ngram_size=2,
|
251 |
+
do_sample=True,
|
252 |
+
top_k=50,
|
253 |
+
top_p=0.95,
|
254 |
+
temperature=0.7
|
255 |
+
)
|
256 |
+
generated_text = gpt_tokenizer.decode(output[0], skip_special_tokens=True)
|
257 |
+
else:
|
258 |
+
raise ValueError("Invalid model type. Choose 'bloom' or 'gpt'.")
|
259 |
+
|
260 |
+
return generated_text
|
261 |
+
|
262 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
263 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
264 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
265 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
266 |
+
def get_sentiment(text):
|
267 |
+
result = sentiment_pipeline(text)[0]
|
268 |
+
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
|
269 |
+
|
270 |
def process_input(text):
|
271 |
try:
|
272 |
normalized_text = normalize_context(text)
|
|
|
278 |
|
279 |
predicted_emotion = emotion_classes[rf_prediction]
|
280 |
sentiment_score = isolation_score
|
281 |
+
bloom_generated_text = generate_text(normalized_text, model_type='bloom')
|
282 |
+
gpt_generated_text = generate_text(normalized_text, model_type='gpt')
|
283 |
|
284 |
historical_data = load_historical_data()
|
285 |
historical_data.append({
|
286 |
'context': text,
|
287 |
'predicted_emotion': predicted_emotion,
|
288 |
'sentiment_score': sentiment_score,
|
289 |
+
'bloom_generated_text': bloom_generated_text,
|
290 |
+
'gpt_generated_text': gpt_generated_text
|
291 |
})
|
292 |
save_historical_data(historical_data)
|
293 |
|
294 |
+
return predicted_emotion, sentiment_score, bloom_generated_text, gpt_generated_text
|
295 |
|
296 |
except Exception as e:
|
297 |
error_message = f"An error occurred: {str(e)}"
|
298 |
print(error_message) # Logging the error
|
299 |
+
return error_message, error_message, error_message, error_message
|
300 |
|
301 |
iface = gr.Interface(
|
302 |
fn=process_input,
|
|
|
304 |
outputs=[
|
305 |
gr.Textbox(label="Emotional Response"),
|
306 |
gr.Textbox(label="Sentiment Response"),
|
307 |
+
gr.Textbox(label="BLOOM Generated Text"),
|
308 |
+
gr.Textbox(label="GPT Generated Text")
|
309 |
],
|
310 |
live=True
|
311 |
)
|
312 |
|
313 |
+
iface.launch(share=True)
|