Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,14 @@ import json
|
|
6 |
import random
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
-
from sklearn.ensemble import RandomForestClassifier
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
from sklearn.preprocessing import OneHotEncoder
|
12 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
|
13 |
from deap import base, creator, tools, algorithms
|
14 |
-
import gc
|
15 |
|
16 |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
17 |
|
18 |
-
# Initialize Example
|
19 |
data = {
|
20 |
'context': [
|
21 |
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
|
@@ -44,18 +42,10 @@ emotion_classes = pd.Categorical(df['emotion']).categories
|
|
44 |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
45 |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
def get_finetuned_lm_model():
|
52 |
-
global _finetuned_lm_tokenizer, _finetuned_lm_model
|
53 |
-
if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
|
54 |
-
model_name = "microsoft/DialoGPT-medium"
|
55 |
-
_finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left')
|
56 |
-
_finetuned_lm_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", low_cpu_mem_usage=True)
|
57 |
-
_finetuned_lm_tokenizer.pad_token = _finetuned_lm_tokenizer.eos_token
|
58 |
-
return _finetuned_lm_tokenizer, _finetuned_lm_model
|
59 |
|
60 |
# Enhanced Emotional States
|
61 |
emotions = {
|
@@ -200,8 +190,13 @@ def generate_response(context):
|
|
200 |
# Ensure pad_token_id is a tensor
|
201 |
pad_token_id = torch.tensor(tokenizer.pad_token_id)
|
202 |
|
203 |
-
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, pad_token_id=pad_token_id.item())
|
204 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
205 |
return response
|
206 |
|
207 |
def handle_conversation(user_input):
|
@@ -218,7 +213,7 @@ with gr.Blocks() as demo:
|
|
218 |
user_input = gr.Textbox(label="User Input")
|
219 |
response = gr.Textbox(label="Bot Response")
|
220 |
submit = gr.Button("Submit")
|
221 |
-
submit.click(update_ui, user_input, response)
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
demo.launch(share=True)
|
|
|
6 |
import random
|
7 |
import gradio as gr
|
8 |
import torch
|
|
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.preprocessing import OneHotEncoder
|
11 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
|
12 |
from deap import base, creator, tools, algorithms
|
|
|
13 |
|
14 |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
15 |
|
16 |
+
# Initialize Example Dataset (For Emotion Prediction)
|
17 |
data = {
|
18 |
'context': [
|
19 |
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
|
|
|
42 |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
43 |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
44 |
|
45 |
+
# Load pre-trained LLM model and tokenizer for response generation
|
46 |
+
response_model_name = "microsoft/DialoGPT-medium"
|
47 |
+
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
48 |
+
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Enhanced Emotional States
|
51 |
emotions = {
|
|
|
190 |
# Ensure pad_token_id is a tensor
|
191 |
pad_token_id = torch.tensor(tokenizer.pad_token_id)
|
192 |
|
193 |
+
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, pad_token_id=pad_token_id.item(), eos_token_id=tokenizer.eos_token_id)
|
194 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
195 |
+
|
196 |
+
# Ensure the response does not repeat the input
|
197 |
+
if context in response:
|
198 |
+
response = response.replace(context, '').strip()
|
199 |
+
|
200 |
return response
|
201 |
|
202 |
def handle_conversation(user_input):
|
|
|
213 |
user_input = gr.Textbox(label="User Input")
|
214 |
response = gr.Textbox(label="Bot Response")
|
215 |
submit = gr.Button("Submit")
|
216 |
+
submit.click(update_ui, inputs=[user_input], outputs=[response])
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
demo.launch(share=True)
|