Sephfox commited on
Commit
bc4f40b
·
verified ·
1 Parent(s): 52b8a27

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -45
app.py CHANGED
@@ -10,7 +10,7 @@ from sklearn.model_selection import train_test_split
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
12
  from deap import base, creator, tools, algorithms
13
- from transformers import GPTJForCausalLM, GPT2TokenizerFast
14
  import torch
15
  import torch.multiprocessing as mp
16
 
@@ -160,46 +160,9 @@ def get_emotional_response(context):
160
  prediction = model.predict(context_encoded)
161
  predicted_emotion = emotion_classes[prediction[0]]
162
 
163
- # Check for anomalies using Isolation Forest
164
- anomaly_score = isolation_forest.decision_function([prediction])[0]
165
- if anomaly_score < -0.5:
166
- print("Anomalous context detected. Adjusting emotional response.")
167
- update_emotion('calmness', 20)
168
- else:
169
- # Define emotional responses
170
- if predicted_emotion == 'joy':
171
- update_emotion('joy', 20)
172
- update_emotion('pleasure', 20)
173
- elif predicted_emotion == 'sadness':
174
- update_emotion('sadness', 20)
175
- update_emotion('grief', 20)
176
- elif predicted_emotion == 'anger':
177
- update_emotion('anger', 20)
178
- elif predicted_emotion == 'determination':
179
- update_emotion('determination', 20)
180
- elif predicted_emotion == 'resentment':
181
- update_emotion('resentment', 20)
182
- elif predicted_emotion == 'glory':
183
- update_emotion('glory', 20)
184
- elif predicted_emotion == 'motivation':
185
- update_emotion('motivation', 20)
186
- elif predicted_emotion == 'surprise':
187
- update_emotion('surprise', 20)
188
- elif predicted_emotion == 'fear':
189
- update_emotion('fear', 20)
190
- elif predicted_emotion == 'trust':
191
- update_emotion('trust', 20)
192
- elif predicted_emotion == 'disgust':
193
- update_emotion('disgust', 20)
194
- elif predicted_emotion == 'optimism':
195
- update_emotion('optimism', 20)
196
- elif predicted_emotion == 'pessimism':
197
- update_emotion('pessimism', 20)
198
- elif predicted_emotion == 'boredom':
199
- update_emotion('boredom', 20)
200
- elif predicted_emotion == 'envy':
201
- update_emotion('envy', 20)
202
-
203
  # Evolve emotions
204
  evolve_emotions()
205
 
@@ -209,10 +172,10 @@ def get_emotional_response(context):
209
 
210
  return f"Emotion: {predicted_emotion}, Emotion Details: {emotions[predicted_emotion]}"
211
 
212
- # Initialize the pre-trained language model
213
- model_name = 'EleutherAI/gpt-j-6B'
214
- tokenizer = GPT2TokenizerFast.from_pretrained(model_name, force_download=True)
215
- lm_model = GPTJForCausalLM.from_pretrained(model_name, force_download=True)
216
 
217
  # Multiprocessing context setting (ensure it's set only once)
218
  if __name__ == '__main__':
 
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
12
  from deap import base, creator, tools, algorithms
13
+ from transformers import AutoModelForCausalLM, AutoTokenizer
14
  import torch
15
  import torch.multiprocessing as mp
16
 
 
160
  prediction = model.predict(context_encoded)
161
  predicted_emotion = emotion_classes[prediction[0]]
162
 
163
+ # Update emotions based on predicted emotion
164
+ update_emotion(predicted_emotion, 20)
165
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  # Evolve emotions
167
  evolve_emotions()
168
 
 
172
 
173
  return f"Emotion: {predicted_emotion}, Emotion Details: {emotions[predicted_emotion]}"
174
 
175
+ # Initialize the pre-trained language model (Phi 3 Mini)
176
+ model_name = 'microsoft/phi3-mini'
177
+ tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
178
+ lm_model = AutoModelForCausalLM.from_pretrained(model_name, force_download=True)
179
 
180
  # Multiprocessing context setting (ensure it's set only once)
181
  if __name__ == '__main__':