Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -128,8 +128,7 @@ def evolve_emotions():
|
|
128 |
toolbox.register("attr_float", random.uniform, 0, 20)
|
129 |
toolbox.register("attr_intensity", random.uniform, 0, 10)
|
130 |
toolbox.register("individual", tools.initCycle, creator.Individual,
|
131 |
-
(toolbox.attr_float,) * (len(emotions) - 1)
|
132 |
-
+
|
133 |
(toolbox.attr_intensity,) * len(emotions) +
|
134 |
(lambda: 100,), n=1)
|
135 |
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
@@ -154,10 +153,10 @@ def evolve_emotions():
|
|
154 |
emotions['ideal_state']['percentage'] = ideal_state
|
155 |
|
156 |
def predict_emotion(context):
|
157 |
-
emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer,
|
158 |
predictions = emotion_prediction_pipeline(context)
|
159 |
emotion_scores = predictions[0]
|
160 |
-
emotion_pred =
|
161 |
return emotion_pred
|
162 |
|
163 |
def generate_text(prompt, max_length=100, emotion=None):
|
@@ -203,4 +202,4 @@ with gr.Blocks() as demo:
|
|
203 |
|
204 |
predict_btn.click(fn=lambda context: (predict_emotion(context), generate_response(context, emotion=predict_emotion(context))), inputs=context_input, outputs=[emotion_output, generated_text_output])
|
205 |
|
206 |
-
demo.launch()
|
|
|
128 |
toolbox.register("attr_float", random.uniform, 0, 20)
|
129 |
toolbox.register("attr_intensity", random.uniform, 0, 10)
|
130 |
toolbox.register("individual", tools.initCycle, creator.Individual,
|
131 |
+
(toolbox.attr_float,) * (len(emotions) - 1) +
|
|
|
132 |
(toolbox.attr_intensity,) * len(emotions) +
|
133 |
(lambda: 100,), n=1)
|
134 |
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
|
|
153 |
emotions['ideal_state']['percentage'] = ideal_state
|
154 |
|
155 |
def predict_emotion(context):
|
156 |
+
emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
|
157 |
predictions = emotion_prediction_pipeline(context)
|
158 |
emotion_scores = predictions[0]
|
159 |
+
emotion_pred = emotion_classes[np.argmax(emotion_scores)]
|
160 |
return emotion_pred
|
161 |
|
162 |
def generate_text(prompt, max_length=100, emotion=None):
|
|
|
202 |
|
203 |
predict_btn.click(fn=lambda context: (predict_emotion(context), generate_response(context, emotion=predict_emotion(context))), inputs=context_input, outputs=[emotion_output, generated_text_output])
|
204 |
|
205 |
+
demo.launch(share=True)
|