Spaces:
Sleeping
Sleeping
File size: 11,324 Bytes
b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 b71e3bf 177a610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import streamlit as st
import numpy as np
import random
import torch
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import os
import traceback
from contextlib import contextmanager
# Error Handling Context Manager
@contextmanager
def error_handling(operation_name):
try:
yield
except Exception as e:
error_msg = f"Error during {operation_name}: {str(e)}\n{traceback.format_exc()}"
st.error(error_msg)
with open("error_log.txt", "a") as f:
f.write(f"\n{error_msg}")
# Cyberpunk Styling
def setup_cyberpunk_style():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
.stApp {
background: linear-gradient(45deg, #000428, #004e92);
}
.main-title {
font-family: 'Orbitron', sans-serif;
color: #00ff9d;
text-align: center;
text-shadow: 0 0 10px #00ff9d;
padding: 20px;
font-size: 2.5em;
margin-bottom: 30px;
}
.stButton>button {
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: black;
font-family: 'Orbitron', sans-serif;
border: none;
padding: 10px 20px;
border-radius: 5px;
text-transform: uppercase;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton>button:hover {
transform: scale(1.05);
box-shadow: 0 0 15px #00ff9d;
}
.metric-container {
background: rgba(0, 0, 0, 0.5);
border: 2px solid #00ff9d;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.status-text {
color: #00ff9d;
font-family: 'Orbitron', sans-serif;
font-size: 1.2em;
}
.sidebar .stSelectbox, .sidebar .stSlider {
background-color: rgba(0, 0, 0, 0.3);
border-radius: 5px;
padding: 10px;
margin: 5px 0;
}
</style>
""", unsafe_allow_html=True)
# Your existing functions with error handling
def generate_demo_data(num_samples=60):
with error_handling("demo data generation"):
# Your existing generate_demo_data code
subjects = [
'Artificial intelligence', 'Climate change', 'Renewable energy',
'Space exploration', 'Quantum computing', 'Genetic engineering',
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
'Biotechnology', 'Nanotechnology', 'Astrophysics'
]
verbs = [
'is transforming', 'is influencing', 'is revolutionizing',
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
'is enhancing', 'is disrupting', 'is redefining'
]
objects = [
'modern science', 'global economies', 'healthcare systems',
'communication methods', 'educational approaches',
'environmental policies', 'social interactions', 'the job market',
'data security', 'the entertainment industry'
]
data = []
for i in range(num_samples):
subject = random.choice(subjects)
verb = random.choice(verbs)
obj = random.choice(objects)
sentence = f"{subject} {verb} {obj}."
data.append(sentence)
return data
def upload_to_huggingface(model_path, token, repo_name):
with error_handling("HuggingFace upload"):
api = HfApi()
api.create_repo(repo_name, token=token, private=True)
api.upload_folder(
folder_path=model_path,
repo_id=repo_name,
token=token
)
return True
def fitness_function(individual, train_dataset, model, tokenizer):
with error_handling("fitness evaluation"):
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=individual['epochs'],
per_device_train_batch_size=individual['batch_size'],
learning_rate=individual['learning_rate'],
logging_steps=10,
save_steps=10,
save_total_limit=2,
report_to='none',
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=None,
)
trainer.train()
logs = [log for log in trainer.state.log_history if 'loss' in log]
return logs[-1]['loss'] if logs else float('inf')
def main():
setup_cyberpunk_style()
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
# Sidebar Configuration
with st.sidebar:
st.markdown("### π Configuration")
hf_token = st.text_input("π HuggingFace Token", type="password")
repo_name = st.text_input("π Repository Name", "my-gpt2-model")
data_source = st.selectbox(
'π Data Source',
('DEMO', 'Upload Text File')
)
st.markdown("### βοΈ Evolution Parameters")
population_size = st.slider("Population Size", 4, 20, 6)
num_generations = st.slider("Generations", 1, 10, 3)
num_parents = st.slider("Parents", 2, population_size, 2)
mutation_rate = st.slider("Mutation Rate", 0.0, 1.0, 0.1)
# Hyperparameter bounds
param_bounds = {
'learning_rate': (1e-5, 5e-5),
'epochs': (1, 3),
'batch_size': [2, 4, 8]
}
# Main Content Area
with error_handling("main application flow"):
if data_source == 'DEMO':
st.info("π€ Using demo data...")
data = generate_demo_data()
else:
uploaded_file = st.file_uploader("π Upload Training Data", type="txt")
if uploaded_file:
data = load_data(uploaded_file)
else:
st.warning("β οΈ Please upload a text file")
st.stop()
# Model Setup
with st.spinner("π§ Loading GPT-2..."):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Dataset Preparation
with st.spinner("π Preparing dataset..."):
train_dataset = prepare_dataset(data, tokenizer)
if st.button("π Start Training", key="start_training"):
progress_bar = st.progress(0)
status_text = st.empty()
# Metrics Display
col1, col2, col3 = st.columns(3)
with col1:
metrics_loss = st.empty()
with col2:
metrics_generation = st.empty()
with col3:
metrics_status = st.empty()
try:
# Initialize GA
population = create_population(population_size, param_bounds)
best_individual = None
best_fitness = float('inf')
fitness_history = []
total_evaluations = num_generations * len(population)
current_evaluation = 0
for generation in range(num_generations):
metrics_generation.markdown(f"""
<div class="metric-container">
<p class="status-text">Generation: {generation + 1}/{num_generations}</p>
</div>
""", unsafe_allow_html=True)
fitnesses = []
for idx, individual in enumerate(population):
status_text.text(f"𧬠Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
# Clone model for each individual
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
model_clone.to(device)
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
fitnesses.append(fitness)
if fitness < best_fitness:
best_fitness = fitness
best_individual = individual.copy()
metrics_loss.markdown(f"""
<div class="metric-container">
<p class="status-text">Best Loss: {best_fitness:.4f}</p>
</div>
""", unsafe_allow_html=True)
current_evaluation += 1
progress_bar.progress(current_evaluation / total_evaluations)
# Evolution steps
parents = select_mating_pool(population, fitnesses, num_parents)
offspring_size = population_size - num_parents
offspring = crossover(parents, offspring_size)
offspring = mutation(offspring, param_bounds, mutation_rate)
population = parents + offspring
fitness_history.append(min(fitnesses))
# Training Complete
st.success("π Training completed!")
st.write("Best Hyperparameters:", best_individual)
st.write("Best Fitness (Loss):", best_fitness)
# Plot fitness history
st.line_chart(fitness_history)
# Save and Upload Model
if st.button("πΎ Save & Upload Model"):
with st.spinner("Saving model..."):
model.save_pretrained('./fine_tuned_model')
tokenizer.save_pretrained('./fine_tuned_model')
if hf_token:
if upload_to_huggingface('./fine_tuned_model', hf_token, repo_name):
st.success(f"β
Model uploaded to HuggingFace: {repo_name}")
else:
st.error("β Failed to upload model")
else:
st.warning("β οΈ No HuggingFace token provided. Model saved locally only.")
except Exception as e:
st.error(f"β Training error: {str(e)}")
with open("error_log.txt", "a") as f:
f.write(f"\nTraining error: {str(e)}\n{traceback.format_exc()}")
if __name__ == "__main__":
main() |