Spaces:
Sleeping
Sleeping
File size: 12,798 Bytes
b71e3bf 177a610 b71e3bf 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 b71e3bf ba908ff 177a610 ba908ff 177a610 ba908ff b71e3bf ba908ff 177a610 ba908ff 177a610 b71e3bf ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff 177a610 ba908ff b71e3bf 177a610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import streamlit as st
import numpy as np
import random
import torch
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import os
import traceback
from contextlib import contextmanager
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime
import time
import json
import pandas as pd
# Advanced Cyberpunk Styling
def setup_advanced_cyberpunk_style():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
.stApp {
background: linear-gradient(
45deg,
rgba(0, 0, 0, 0.9) 0%,
rgba(0, 30, 60, 0.9) 50%,
rgba(0, 0, 0, 0.9) 100%
);
color: #00ff9d;
}
.main-title {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
font-size: 3.5em;
margin-bottom: 30px;
text-transform: uppercase;
letter-spacing: 3px;
animation: glow 2s ease-in-out infinite alternate;
}
@keyframes glow {
from {
text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d, 0 0 15px #00ff9d;
}
to {
text-shadow: 0 0 10px #00b8ff, 0 0 20px #00b8ff, 0 0 30px #00b8ff;
}
}
.cyber-box {
background: rgba(0, 0, 0, 0.7);
border: 2px solid #00ff9d;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
position: relative;
overflow: hidden;
}
.cyber-box::before {
content: '';
position: absolute;
top: -2px;
left: -2px;
right: -2px;
bottom: -2px;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
z-index: -1;
filter: blur(10px);
opacity: 0.5;
}
.metric-container {
background: rgba(0, 0, 0, 0.8);
border: 2px solid #00ff9d;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
position: relative;
overflow: hidden;
transition: all 0.3s ease;
}
.metric-container:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0, 255, 157, 0.3);
}
.status-text {
font-family: 'Share Tech Mono', monospace;
color: #00ff9d;
font-size: 1.2em;
margin: 0;
text-shadow: 0 0 5px #00ff9d;
}
.sidebar .stSelectbox, .sidebar .stSlider {
background-color: rgba(0, 0, 0, 0.5);
border-radius: 5px;
padding: 15px;
margin: 10px 0;
border: 1px solid #00ff9d;
}
.stButton>button {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: black;
border: none;
padding: 15px 30px;
border-radius: 5px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 2px;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
}
.stButton>button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
}
.stButton>button::after {
content: '';
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: linear-gradient(
45deg,
transparent,
rgba(255, 255, 255, 0.1),
transparent
);
transform: rotate(45deg);
animation: shine 3s infinite;
}
@keyframes shine {
0% {
transform: translateX(-100%) rotate(45deg);
}
100% {
transform: translateX(100%) rotate(45deg);
}
}
.custom-info-box {
background: rgba(0, 255, 157, 0.1);
border-left: 5px solid #00ff9d;
padding: 15px;
margin: 10px 0;
font-family: 'Share Tech Mono', monospace;
}
.progress-bar-container {
width: 100%;
height: 30px;
background: rgba(0, 0, 0, 0.5);
border: 2px solid #00ff9d;
border-radius: 15px;
overflow: hidden;
position: relative;
}
.progress-bar {
height: 100%;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
transition: width 0.3s ease;
}
</style>
""", unsafe_allow_html=True)
# Fixed prepare_dataset function
def prepare_dataset(data, tokenizer, block_size=128):
with error_handling("dataset preparation"):
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
tokenized_dataset = tokenized_dataset.map(
lambda examples: {'labels': examples['input_ids']},
batched=True
)
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
# Advanced Metrics Visualization
def create_training_metrics_plot(fitness_history):
fig = go.Figure()
fig.add_trace(go.Scatter(
y=fitness_history,
mode='lines+markers',
name='Loss',
line=dict(color='#00ff9d', width=2),
marker=dict(size=8, symbol='diamond'),
))
fig.update_layout(
title={
'text': 'Training Progress',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top',
'font': {'family': 'Orbitron', 'size': 24, 'color': '#00ff9d'}
},
paper_bgcolor='rgba(0,0,0,0.5)',
plot_bgcolor='rgba(0,0,0,0.3)',
font=dict(family='Share Tech Mono', color='#00ff9d'),
xaxis=dict(
title='Generation',
gridcolor='rgba(0,255,157,0.1)',
zerolinecolor='#00ff9d'
),
yaxis=dict(
title='Loss',
gridcolor='rgba(0,255,157,0.1)',
zerolinecolor='#00ff9d'
),
hovermode='x unified'
)
return fig
# Advanced Training Dashboard
class TrainingDashboard:
def __init__(self):
self.metrics = {
'current_loss': 0,
'best_loss': float('inf'),
'generation': 0,
'individual': 0,
'start_time': time.time(),
'training_speed': 0
}
self.history = []
def update(self, loss, generation, individual):
self.metrics['current_loss'] = loss
self.metrics['generation'] = generation
self.metrics['individual'] = individual
if loss < self.metrics['best_loss']:
self.metrics['best_loss'] = loss
elapsed_time = time.time() - self.metrics['start_time']
self.metrics['training_speed'] = (generation * individual) / elapsed_time
self.history.append({
'loss': loss,
'timestamp': datetime.now().strftime('%H:%M:%S')
})
def display(self):
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("""
<div class="metric-container">
<h3 style="color: #00ff9d;">Current Status</h3>
<p class="status-text">Generation: {}/{}</p>
<p class="status-text">Individual: {}/{}</p>
</div>
""".format(
self.metrics['generation'],
self.metrics['total_generations'],
self.metrics['individual'],
self.metrics['population_size']
), unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="metric-container">
<h3 style="color: #00ff9d;">Performance</h3>
<p class="status-text">Current Loss: {:.4f}</p>
<p class="status-text">Best Loss: {:.4f}</p>
</div>
""".format(
self.metrics['current_loss'],
self.metrics['best_loss']
), unsafe_allow_html=True)
with col3:
st.markdown("""
<div class="metric-container">
<h3 style="color: #00ff9d;">Training Metrics</h3>
<p class="status-text">Speed: {:.2f} iter/s</p>
<p class="status-text">Runtime: {:.2f}m</p>
</div>
""".format(
self.metrics['training_speed'],
(time.time() - self.metrics['start_time']) / 60
), unsafe_allow_html=True)
def main():
setup_advanced_cyberpunk_style()
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
# Initialize dashboard
dashboard = TrainingDashboard()
# Advanced Sidebar
with st.sidebar:
st.markdown("""
<div style="text-align: center; padding: 20px;">
<h2 style="font-family: 'Orbitron'; color: #00ff9d;">Control Panel</h2>
</div>
""", unsafe_allow_html=True)
# Configuration Tabs
tab1, tab2, tab3 = st.tabs(["π§ Setup", "βοΈ Parameters", "π Monitoring"])
with tab1:
hf_token = st.text_input("π HuggingFace Token", type="password")
repo_name = st.text_input("π Repository Name", "my-gpt2-model")
data_source = st.selectbox('π Data Source', ('DEMO', 'Upload Text File'))
with tab2:
population_size = st.slider("Population Size", 4, 20, 6)
num_generations = st.slider("Generations", 1, 10, 3)
num_parents = st.slider("Parents", 2, population_size, 2)
mutation_rate = st.slider("Mutation Rate", 0.0, 1.0, 0.1)
# Advanced Parameters
with st.expander("π¬ Advanced Settings"):
learning_rate_min = st.number_input("Min Learning Rate", 1e-6, 1e-4, 1e-5)
learning_rate_max = st.number_input("Max Learning Rate", 1e-5, 1e-3, 5e-5)
batch_size_options = st.multiselect("Batch Sizes", [2, 4, 8, 16], default=[2, 4, 8])
with tab3:
st.markdown("""
<div class="cyber-box">
<h3 style="color: #00ff9d;">System Status</h3>
<p>GPU: {}</p>
<p>Memory Usage: {:.2f}GB</p>
</div>
""".format(
'CUDA' if torch.cuda.is_available() else 'CPU',
torch.cuda.memory_allocated() / 1e9 if torch.cuda.is_available() else 0
), unsafe_allow_html=True)
# [Rest of your existing main() function code here, integrated with the dashboard]
# Make sure to update the dashboard metrics during training
# Example of updating dashboard during training:
for generation in range(num_generations):
for idx, individual in enumerate(population):
# Your existing training code
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
dashboard.update(fitness, generation + 1, idx + 1)
dashboard.display()
# Update progress
progress = (generation * len(population) + idx + 1) / (num_generations * len(population))
st.markdown(f"""
<div class="progress-bar-container">
<div class="progress-bar" style="width: {progress * 100}%"></div>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |