Spaces:
Sleeping
Sleeping
File size: 9,130 Bytes
23d3c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import streamlit as st
import numpy as np
import random
import torch
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
import os
# Set random seeds for reproducibility
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
def generate_demo_data(num_samples=60):
# Generate meaningful sentences on various topics
subjects = [
'Artificial intelligence', 'Climate change', 'Renewable energy',
'Space exploration', 'Quantum computing', 'Genetic engineering',
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
'Biotechnology', 'Nanotechnology', 'Astrophysics'
]
verbs = [
'is transforming', 'is influencing', 'is revolutionizing',
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
'is enhancing', 'is disrupting', 'is redefining'
]
objects = [
'modern science', 'global economies', 'healthcare systems',
'communication methods', 'educational approaches',
'environmental policies', 'social interactions', 'the job market',
'data security', 'the entertainment industry'
]
data = []
for i in range(num_samples):
subject = random.choice(subjects)
verb = random.choice(verbs)
obj = random.choice(objects)
sentence = f"{subject} {verb} {obj}."
data.append(sentence)
return data
def load_data(uploaded_file):
# Load user-uploaded text file
data = uploaded_file.read().decode("utf-8")
data = data.splitlines()
return data
def prepare_dataset(data, tokenizer, block_size=128):
# Tokenize the texts
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
# Create labels for language modeling
tokenized_dataset = tokenized_dataset.map(
lambda examples: {'labels': examples['input_ids']},
batched=True
)
# Set the format for PyTorch
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
def fitness_function(individual, train_dataset, model, tokenizer):
# Define the training arguments
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=individual['epochs'],
per_device_train_batch_size=individual['batch_size'],
learning_rate=individual['learning_rate'],
logging_steps=10,
save_steps=10,
save_total_limit=2,
report_to='none', # Disable logging to Wandb or other services
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
# Train the model
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=None,
)
trainer.train()
# For simplicity, use final training loss as fitness score
logs = [log for log in trainer.state.log_history if 'loss' in log]
if logs:
loss = logs[-1]['loss']
else:
loss = float('inf')
return loss
# Genetic Algorithm Functions
def create_population(size, param_bounds):
population = []
for _ in range(size):
individual = {
'learning_rate': random.uniform(*param_bounds['learning_rate']),
'epochs': random.randint(*param_bounds['epochs']),
'batch_size': random.choice(param_bounds['batch_size']),
}
population.append(individual)
return population
def select_mating_pool(population, fitnesses, num_parents):
parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
return parents
def crossover(parents, offspring_size):
offspring = []
for _ in range(offspring_size):
parent1 = random.choice(parents)
parent2 = random.choice(parents)
child = {
'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
}
offspring.append(child)
return offspring
def mutation(offspring, param_bounds, mutation_rate=0.1):
for individual in offspring:
if random.random() < mutation_rate:
individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
if random.random() < mutation_rate:
individual['epochs'] = random.randint(*param_bounds['epochs'])
if random.random() < mutation_rate:
individual['batch_size'] = random.choice(param_bounds['batch_size'])
return offspring
# Streamlit App
def main():
st.title("GPT-2 Fine-Tuning with Genetic Algorithm")
option = st.sidebar.selectbox(
'Choose Data Source',
('DEMO', 'Upload Text File')
)
if option == 'DEMO':
st.write("Using DEMO data...")
data = generate_demo_data()
else:
st.write("Upload a text file for fine-tuning.")
uploaded_file = st.file_uploader("Choose a text file", type="txt")
if uploaded_file is not None:
data = load_data(uploaded_file)
else:
st.warning("Please upload a text file.")
st.stop()
# Load tokenizer and model
st.write("Loading GPT-2 tokenizer and model...")
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.to('cuda' if torch.cuda.is_available() else 'cpu')
# Set the pad token
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Prepare dataset
st.write("Preparing dataset...")
train_dataset = prepare_dataset(data, tokenizer)
# GA Parameters
st.sidebar.subheader("Genetic Algorithm Parameters")
population_size = st.sidebar.number_input("Population Size", 4, 20, 6)
num_generations = st.sidebar.number_input("Number of Generations", 1, 10, 3)
num_parents = st.sidebar.number_input("Number of Parents", 2, population_size, 2)
mutation_rate = st.sidebar.slider("Mutation Rate", 0.0, 1.0, 0.1)
# Hyperparameter bounds
param_bounds = {
'learning_rate': (1e-5, 5e-5),
'epochs': (1, 3),
'batch_size': [2, 4, 8]
}
if st.button("Start Training"):
st.write("Initializing Genetic Algorithm...")
population = create_population(population_size, param_bounds)
best_individual = None
best_fitness = float('inf')
fitness_history = []
progress_bar = st.progress(0)
status_text = st.empty()
total_evaluations = num_generations * len(population)
current_evaluation = 0
for generation in range(num_generations):
st.write(f"Generation {generation+1}/{num_generations}")
fitnesses = []
for idx, individual in enumerate(population):
status_text.text(f"Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
# Clone the model to avoid reusing the same model
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
model_clone.to('cuda' if torch.cuda.is_available() else 'cpu')
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
fitnesses.append(fitness)
if fitness < best_fitness:
best_fitness = fitness
best_individual = individual
current_evaluation += 1
progress_bar.progress(current_evaluation / total_evaluations)
fitness_history.append(min(fitnesses))
parents = select_mating_pool(population, fitnesses, num_parents)
offspring_size = population_size - num_parents
offspring = crossover(parents, offspring_size)
offspring = mutation(offspring, param_bounds, mutation_rate)
population = parents + offspring
st.write("Training completed!")
st.write(f"Best Hyperparameters: {best_individual}")
st.write(f"Best Fitness (Loss): {best_fitness}")
# Plot fitness history
st.line_chart(fitness_history)
# Save the best model
if st.button("Save Model"):
model_clone.save_pretrained('./fine_tuned_model')
tokenizer.save_pretrained('./fine_tuned_model')
st.write("Model saved successfully!")
if __name__ == "__main__":
main()
|