Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling | |
from datasets import Dataset | |
import time | |
from datetime import datetime | |
import plotly.graph_objects as go | |
# Advanced Cyberpunk Styling | |
def setup_advanced_cyberpunk_style(): | |
st.markdown(""" | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap'); | |
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap'); | |
/* Additional styling as provided previously */ | |
</style> | |
""", unsafe_allow_html=True) | |
# Initialize Model and Tokenizer | |
def initialize_model(): | |
model = GPT2LMHeadModel.from_pretrained("gpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
return model, tokenizer | |
# Prepare Dataset | |
def prepare_dataset(data, tokenizer, block_size=128): | |
def tokenize_function(examples): | |
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length') | |
raw_dataset = Dataset.from_dict({'text': data}) | |
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text']) | |
tokenized_dataset = tokenized_dataset.map( | |
lambda examples: {'labels': examples['input_ids']}, | |
batched=True | |
) | |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) | |
return tokenized_dataset | |
# Training Dashboard Class | |
class TrainingDashboard: | |
def __init__(self): | |
self.metrics = { | |
'current_loss': 0, | |
'best_loss': float('inf'), | |
'generation': 0, | |
'start_time': time.time(), | |
'training_speed': 0 | |
} | |
self.history = [] | |
def update(self, loss, generation): | |
self.metrics['current_loss'] = loss | |
self.metrics['generation'] = generation | |
if loss < self.metrics['best_loss']: | |
self.metrics['best_loss'] = loss | |
elapsed_time = time.time() - self.metrics['start_time'] | |
self.metrics['training_speed'] = generation / elapsed_time | |
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')}) | |
def display(self): | |
st.write(f"**Generation:** {self.metrics['generation']}") | |
st.write(f"**Current Loss:** {self.metrics['current_loss']:.4f}") | |
st.write(f"**Best Loss:** {self.metrics['best_loss']:.4f}") | |
st.write(f"**Training Speed:** {self.metrics['training_speed']:.2f} generations/sec") | |
# Display Progress Bar | |
def display_progress(progress): | |
st.markdown(f""" | |
<div class="progress-bar-container"> | |
<div class="progress-bar" style="width: {progress * 100}%"></div> | |
</div> | |
""", unsafe_allow_html=True) | |
# Fitness Calculation (Placeholder for actual loss computation) | |
def compute_loss(model, dataset): | |
# Placeholder for real loss computation with Trainer API or custom logic | |
trainer = Trainer( | |
model=model, | |
args=TrainingArguments(output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1), | |
train_dataset=dataset, | |
data_collator=DataCollatorForLanguageModeling(tokenizer=model.config._name_or_path, mlm=False), | |
) | |
train_result = trainer.train() | |
return train_result.training_loss | |
# Training Loop with Loading Screen | |
def training_loop(dashboard, model, dataset, num_generations, population_size): | |
with st.spinner("Training in progress..."): | |
for generation in range(1, num_generations + 1): | |
# Simulated population loop | |
for individual in range(population_size): | |
loss = compute_loss(model, dataset) | |
dashboard.update(loss, generation) | |
progress = generation / num_generations | |
display_progress(progress) | |
dashboard.display() | |
time.sleep(1) # Simulate delay for each individual training | |
# Main Function | |
def main(): | |
setup_advanced_cyberpunk_style() | |
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True) | |
# Load Model and Tokenizer | |
model, tokenizer = initialize_model() | |
# Prepare Data | |
data = ["Sample training text"] * 10 # Replace with real data | |
train_dataset = prepare_dataset(data, tokenizer) | |
# Initialize Dashboard | |
dashboard = TrainingDashboard() | |
# Sidebar Configuration | |
st.sidebar.markdown("### Training Parameters") | |
num_generations = st.sidebar.slider("Generations", 1, 20, 5) | |
population_size = st.sidebar.slider("Population Size", 4, 20, 6) | |
# Run Training | |
if st.button("Start Training"): | |
training_loop(dashboard, model, train_dataset, num_generations, population_size) | |
if __name__ == "__main__": | |
main() | |