Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,80 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
5 |
from datasets import Dataset
|
|
|
|
|
6 |
import time
|
7 |
from datetime import datetime
|
8 |
-
import plotly.graph_objects as go
|
9 |
-
from huggingface_hub import HfApi, HfFolder
|
10 |
-
|
11 |
-
# Initialize Hugging Face Authentication
|
12 |
-
def huggingface_login():
|
13 |
-
token = st.text_input("Hugging Face Token", type="password")
|
14 |
-
if token:
|
15 |
-
HfFolder.save_token(token)
|
16 |
-
api = HfApi()
|
17 |
-
user_info = api.whoami(token)
|
18 |
-
st.sidebar.write(f"Logged in as: {user_info['name']}")
|
19 |
-
return token
|
20 |
-
else:
|
21 |
-
st.warning("Please enter your Hugging Face token")
|
22 |
-
return None
|
23 |
|
24 |
-
#
|
25 |
-
def
|
26 |
st.markdown("""
|
27 |
<style>
|
28 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
|
29 |
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# Prepare Dataset
|
45 |
def prepare_dataset(data, tokenizer, block_size=128):
|
|
|
46 |
def tokenize_function(examples):
|
47 |
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
|
48 |
|
@@ -52,145 +84,114 @@ def prepare_dataset(data, tokenizer, block_size=128):
|
|
52 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
53 |
return tokenized_dataset
|
54 |
|
55 |
-
# Training Dashboard Class
|
56 |
class TrainingDashboard:
|
57 |
def __init__(self):
|
58 |
self.metrics = {
|
59 |
'current_loss': 0,
|
60 |
'best_loss': float('inf'),
|
61 |
'generation': 0,
|
|
|
62 |
'start_time': time.time(),
|
63 |
'training_speed': 0
|
64 |
}
|
65 |
self.history = []
|
66 |
-
|
67 |
-
def update(self, loss, generation):
|
68 |
self.metrics['current_loss'] = loss
|
69 |
self.metrics['generation'] = generation
|
|
|
70 |
if loss < self.metrics['best_loss']:
|
71 |
self.metrics['best_loss'] = loss
|
|
|
72 |
elapsed_time = time.time() - self.metrics['start_time']
|
73 |
-
self.metrics['training_speed'] = generation / elapsed_time
|
74 |
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})
|
75 |
-
|
76 |
-
def display(self):
|
77 |
-
st.write(f"**Generation:** {self.metrics['generation']}")
|
78 |
-
st.write(f"**Current Loss:** {self.metrics['current_loss']:.4f}")
|
79 |
-
st.write(f"**Best Loss:** {self.metrics['best_loss']:.4f}")
|
80 |
-
st.write(f"**Training Speed:** {self.metrics['training_speed']:.2f} generations/sec")
|
81 |
-
|
82 |
-
# Display Progress Bar
|
83 |
-
def display_progress(progress):
|
84 |
-
st.markdown(f"""
|
85 |
-
<div class="progress-bar-container">
|
86 |
-
<div class="progress-bar" style="width: {progress * 100}%"></div>
|
87 |
-
</div>
|
88 |
-
""", unsafe_allow_html=True)
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
self.population_size = population_size
|
97 |
-
self.mutation_rate = mutation_rate
|
98 |
-
self.population = [self.clone_model() for _ in range(population_size)]
|
99 |
-
|
100 |
-
def clone_model(self):
|
101 |
-
# Create a clone of the model
|
102 |
-
return GPT2LMHeadModel.from_pretrained("gpt2")
|
103 |
-
|
104 |
-
def evaluate_fitness(self, model):
|
105 |
-
# Calculate the loss for a given model on the dataset
|
106 |
-
trainer = Trainer(
|
107 |
-
model=model,
|
108 |
-
args=TrainingArguments(output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1),
|
109 |
-
train_dataset=self.dataset,
|
110 |
-
data_collator=DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False),
|
111 |
-
)
|
112 |
-
train_result = trainer.train()
|
113 |
-
return train_result.training_loss
|
114 |
-
|
115 |
-
def select_best_models(self, num_best=2):
|
116 |
-
# Selects the top models based on fitness (loss)
|
117 |
-
fitness_scores = [(self.evaluate_fitness(model), model) for model in self.population]
|
118 |
-
fitness_scores.sort(key=lambda x: x[0]) # Sort by loss
|
119 |
-
best_models = [model for _, model in fitness_scores[:num_best]]
|
120 |
-
return best_models
|
121 |
-
|
122 |
-
def crossover(self, parent1, parent2):
|
123 |
-
# Perform crossover by combining layers from both parents
|
124 |
-
child = self.clone_model()
|
125 |
-
for (child_param, param1, param2) in zip(child.parameters(), parent1.parameters(), parent2.parameters()):
|
126 |
-
# Randomly choose parameters from each parent based on crossover probability
|
127 |
-
if np.random.rand() > 0.5:
|
128 |
-
child_param.data = param1.data.clone()
|
129 |
-
else:
|
130 |
-
child_param.data = param2.data.clone()
|
131 |
-
return child
|
132 |
-
|
133 |
-
def mutate(self, model):
|
134 |
-
# Mutate model by slightly adjusting its weights
|
135 |
-
for param in model.parameters():
|
136 |
-
if np.random.rand() < self.mutation_rate:
|
137 |
-
mutation_tensor = torch.randn_like(param) * 0.02
|
138 |
-
param.data += mutation_tensor
|
139 |
-
|
140 |
-
def generate_new_population(self):
|
141 |
-
best_models = self.select_best_models()
|
142 |
-
new_population = []
|
143 |
-
while len(new_population) < self.population_size:
|
144 |
-
parent1, parent2 = np.random.choice(best_models, 2, replace=False)
|
145 |
-
child = self.crossover(parent1, parent2)
|
146 |
-
self.mutate(child)
|
147 |
-
new_population.append(child)
|
148 |
-
self.population = new_population
|
149 |
-
|
150 |
-
# Training Loop with Genetic Algorithm and Loading Screen
|
151 |
-
def training_loop(dashboard, ga, num_generations):
|
152 |
-
with st.spinner("Training in progress..."):
|
153 |
-
for generation in range(1, num_generations + 1):
|
154 |
-
best_loss = min([ga.evaluate_fitness(model) for model in ga.population])
|
155 |
-
dashboard.update(best_loss, generation)
|
156 |
-
progress = generation / num_generations
|
157 |
-
display_progress(progress)
|
158 |
-
dashboard.display()
|
159 |
-
ga.generate_new_population()
|
160 |
-
time.sleep(0.5) # Simulate delay for each generation
|
161 |
-
|
162 |
-
# Main Function
|
163 |
-
def main():
|
164 |
-
setup_advanced_cyberpunk_style()
|
165 |
-
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
if
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
data = ["Sample training text"] * 10 # Replace with real data
|
177 |
-
train_dataset = prepare_dataset(data, tokenizer)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
st.sidebar.markdown("### Training Parameters")
|
184 |
-
num_generations = st.sidebar.slider("Generations", 1, 50, 10)
|
185 |
-
population_size = st.sidebar.slider("Population Size", 4, 20, 10)
|
186 |
-
mutation_rate = st.sidebar.slider("Mutation Rate", 0.01, 0.5, 0.1)
|
187 |
|
188 |
-
# Initialize
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
if st.button("Start Training"):
|
193 |
-
training_loop(dashboard, ga, num_generations)
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
main()
|
|
|
1 |
+
# Imports
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import random
|
6 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
7 |
from datasets import Dataset
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
import plotly.graph_objects as go
|
10 |
import time
|
11 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Cyberpunk and Loading Animation Styling
|
14 |
+
def setup_cyberpunk_style():
|
15 |
st.markdown("""
|
16 |
<style>
|
17 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
|
18 |
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
|
19 |
+
|
20 |
+
.stApp {
|
21 |
+
background: radial-gradient(circle, rgba(0, 0, 0, 0.95) 20%, rgba(0, 50, 80, 0.95) 90%);
|
22 |
+
color: #00ff9d;
|
23 |
+
font-family: 'Orbitron', sans-serif;
|
24 |
+
}
|
25 |
+
|
26 |
+
.main-title {
|
27 |
+
text-align: center;
|
28 |
+
font-size: 4em;
|
29 |
+
color: #00ff9d;
|
30 |
+
letter-spacing: 4px;
|
31 |
+
animation: glow 2s ease-in-out infinite alternate;
|
32 |
+
}
|
33 |
+
|
34 |
+
@keyframes glow {
|
35 |
+
from {text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d;}
|
36 |
+
to {text-shadow: 0 0 15px #00b8ff, 0 0 20px #00b8ff;}
|
37 |
+
}
|
38 |
|
39 |
+
.stButton > button {
|
40 |
+
font-family: 'Orbitron', sans-serif;
|
41 |
+
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
42 |
+
color: #000;
|
43 |
+
font-size: 1.1em;
|
44 |
+
padding: 10px 20px;
|
45 |
+
border: none;
|
46 |
+
border-radius: 8px;
|
47 |
+
transition: all 0.3s ease;
|
48 |
+
}
|
49 |
+
|
50 |
+
.stButton > button:hover {
|
51 |
+
transform: scale(1.1);
|
52 |
+
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
|
53 |
+
}
|
54 |
|
55 |
+
.progress-bar-container {
|
56 |
+
background: rgba(0, 0, 0, 0.5);
|
57 |
+
border-radius: 15px;
|
58 |
+
overflow: hidden;
|
59 |
+
width: 100%;
|
60 |
+
height: 30px;
|
61 |
+
position: relative;
|
62 |
+
margin: 10px 0;
|
63 |
+
}
|
64 |
+
|
65 |
+
.progress-bar {
|
66 |
+
height: 100%;
|
67 |
+
width: 0%;
|
68 |
+
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
69 |
+
transition: width 0.5s ease;
|
70 |
+
}
|
71 |
+
|
72 |
+
</style>
|
73 |
+
""", unsafe_allow_html=True)
|
74 |
|
75 |
+
# Prepare Dataset Function with Padding Token Fix
|
76 |
def prepare_dataset(data, tokenizer, block_size=128):
|
77 |
+
tokenizer.pad_token = tokenizer.eos_token
|
78 |
def tokenize_function(examples):
|
79 |
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
|
80 |
|
|
|
84 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
85 |
return tokenized_dataset
|
86 |
|
87 |
+
# Training Dashboard Class with Enhanced Display
|
88 |
class TrainingDashboard:
|
89 |
def __init__(self):
|
90 |
self.metrics = {
|
91 |
'current_loss': 0,
|
92 |
'best_loss': float('inf'),
|
93 |
'generation': 0,
|
94 |
+
'individual': 0,
|
95 |
'start_time': time.time(),
|
96 |
'training_speed': 0
|
97 |
}
|
98 |
self.history = []
|
99 |
+
|
100 |
+
def update(self, loss, generation, individual):
|
101 |
self.metrics['current_loss'] = loss
|
102 |
self.metrics['generation'] = generation
|
103 |
+
self.metrics['individual'] = individual
|
104 |
if loss < self.metrics['best_loss']:
|
105 |
self.metrics['best_loss'] = loss
|
106 |
+
|
107 |
elapsed_time = time.time() - self.metrics['start_time']
|
108 |
+
self.metrics['training_speed'] = (generation * individual) / elapsed_time
|
109 |
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Define Model Initialization
|
112 |
+
def initialize_model(model_name="gpt2"):
|
113 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
114 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
115 |
+
tokenizer.pad_token = tokenizer.eos_token
|
116 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Load Dataset Function
|
119 |
+
def load_dataset(data_source="demo", tokenizer=None):
|
120 |
+
if data_source == "demo":
|
121 |
+
data = ["Sample text data for model training. This can be replaced with actual data for better performance."]
|
122 |
+
else:
|
123 |
+
data = ["Loaded data from uploaded text file."]
|
124 |
+
dataset = prepare_dataset(data, tokenizer)
|
125 |
+
return dataset
|
126 |
+
|
127 |
+
# Train Model Function with Customized Progress Bar
|
128 |
+
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4):
|
129 |
+
training_args = TrainingArguments(
|
130 |
+
output_dir="./results",
|
131 |
+
overwrite_output_dir=True,
|
132 |
+
num_train_epochs=epochs,
|
133 |
+
per_device_train_batch_size=batch_size,
|
134 |
+
save_steps=10_000,
|
135 |
+
save_total_limit=2,
|
136 |
+
logging_dir="./logs",
|
137 |
+
logging_steps=100,
|
138 |
+
)
|
139 |
+
|
140 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
141 |
|
142 |
+
trainer = Trainer(
|
143 |
+
model=model,
|
144 |
+
args=training_args,
|
145 |
+
data_collator=data_collator,
|
146 |
+
train_dataset=train_dataset,
|
147 |
+
)
|
148 |
|
149 |
+
trainer.train()
|
|
|
|
|
150 |
|
151 |
+
# Main App Logic
|
152 |
+
def main():
|
153 |
+
setup_cyberpunk_style()
|
154 |
+
st.markdown('<h1 class="main-title">Cyberpunk Neural Training Hub</h1>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
# Initialize model and tokenizer
|
157 |
+
model, tokenizer = initialize_model()
|
158 |
+
|
159 |
+
# Sidebar Configuration with Additional Options
|
160 |
+
with st.sidebar:
|
161 |
+
st.markdown("### Configuration Panel")
|
162 |
+
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
|
163 |
+
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
|
164 |
+
model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
|
165 |
+
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
|
166 |
+
custom_learning_rate = st.slider("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6)
|
167 |
+
|
168 |
+
advanced_toggle = st.checkbox("Advanced Training Settings")
|
169 |
+
if advanced_toggle:
|
170 |
+
warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
|
171 |
+
weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
|
172 |
+
else:
|
173 |
+
warmup_steps = 100
|
174 |
+
weight_decay = 0.01
|
175 |
+
|
176 |
+
# Load Dataset
|
177 |
+
train_dataset = load_dataset(data_source, tokenizer)
|
178 |
+
|
179 |
+
# Start Training with Progress Bar
|
180 |
+
progress_placeholder = st.empty()
|
181 |
+
st.markdown("### Model Training Progress")
|
182 |
+
|
183 |
+
for epoch in range(training_epochs):
|
184 |
+
train_model(model, train_dataset, tokenizer, epochs=1, batch_size=batch_size)
|
185 |
+
|
186 |
+
# Update Progress Bar
|
187 |
+
progress = (epoch + 1) / training_epochs * 100
|
188 |
+
progress_placeholder.markdown(f"""
|
189 |
+
<div class="progress-bar-container">
|
190 |
+
<div class="progress-bar" style="width: {progress}%;"></div>
|
191 |
+
</div>
|
192 |
+
""", unsafe_allow_html=True)
|
193 |
|
194 |
+
st.success("Training Complete!")
|
|
|
|
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
main()
|