import streamlit as st import numpy as np import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling from datasets import Dataset import time from datetime import datetime import plotly.graph_objects as go from huggingface_hub import HfApi, HfFolder # Initialize Hugging Face Authentication def huggingface_login(): token = st.text_input("Hugging Face Token", type="password") if token: HfFolder.save_token(token) api = HfApi() user_info = api.whoami(token) st.sidebar.write(f"Logged in as: {user_info['name']}") return token else: st.warning("Please enter your Hugging Face token") return None # Advanced Cyberpunk Styling def setup_advanced_cyberpunk_style(): st.markdown(""" """, unsafe_allow_html=True) # Initialize Model and Tokenizer def initialize_model(): model = GPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Set padding token to eos_token tokenizer.pad_token = tokenizer.eos_token return model, tokenizer # Prepare Dataset def prepare_dataset(data, tokenizer, block_size=128): def tokenize_function(examples): return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length') raw_dataset = Dataset.from_dict({'text': data}) tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text']) tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True) tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) return tokenized_dataset # Training Dashboard Class class TrainingDashboard: def __init__(self): self.metrics = { 'current_loss': 0, 'best_loss': float('inf'), 'generation': 0, 'start_time': time.time(), 'training_speed': 0 } self.history = [] def update(self, loss, generation): self.metrics['current_loss'] = loss self.metrics['generation'] = generation if loss < self.metrics['best_loss']: self.metrics['best_loss'] = loss elapsed_time = time.time() - self.metrics['start_time'] self.metrics['training_speed'] = generation / elapsed_time self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')}) def display(self): st.write(f"**Generation:** {self.metrics['generation']}") st.write(f"**Current Loss:** {self.metrics['current_loss']:.4f}") st.write(f"**Best Loss:** {self.metrics['best_loss']:.4f}") st.write(f"**Training Speed:** {self.metrics['training_speed']:.2f} generations/sec") # Display Progress Bar def display_progress(progress): st.markdown(f"""
""", unsafe_allow_html=True) # Custom Genetic Algorithm class GeneticAlgorithm: def __init__(self, model, tokenizer, dataset, population_size, mutation_rate=0.1): self.model = model self.tokenizer = tokenizer self.dataset = dataset self.population_size = population_size self.mutation_rate = mutation_rate self.population = [self.clone_model() for _ in range(population_size)] def clone_model(self): # Create a clone of the model return GPT2LMHeadModel.from_pretrained("gpt2") def evaluate_fitness(self, model): # Calculate the loss for a given model on the dataset trainer = Trainer( model=model, args=TrainingArguments(output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1), train_dataset=self.dataset, data_collator=DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False), ) train_result = trainer.train() return train_result.training_loss def select_best_models(self, num_best=2): # Selects the top models based on fitness (loss) fitness_scores = [(self.evaluate_fitness(model), model) for model in self.population] fitness_scores.sort(key=lambda x: x[0]) # Sort by loss best_models = [model for _, model in fitness_scores[:num_best]] return best_models def crossover(self, parent1, parent2): # Perform crossover by combining layers from both parents child = self.clone_model() for (child_param, param1, param2) in zip(child.parameters(), parent1.parameters(), parent2.parameters()): # Randomly choose parameters from each parent based on crossover probability if np.random.rand() > 0.5: child_param.data = param1.data.clone() else: child_param.data = param2.data.clone() return child def mutate(self, model): # Mutate model by slightly adjusting its weights for param in model.parameters(): if np.random.rand() < self.mutation_rate: mutation_tensor = torch.randn_like(param) * 0.02 param.data += mutation_tensor def generate_new_population(self): best_models = self.select_best_models() new_population = [] while len(new_population) < self.population_size: parent1, parent2 = np.random.choice(best_models, 2, replace=False) child = self.crossover(parent1, parent2) self.mutate(child) new_population.append(child) self.population = new_population # Training Loop with Genetic Algorithm and Loading Screen def training_loop(dashboard, ga, num_generations): with st.spinner("Training in progress..."): for generation in range(1, num_generations + 1): best_loss = min([ga.evaluate_fitness(model) for model in ga.population]) dashboard.update(best_loss, generation) progress = generation / num_generations display_progress(progress) dashboard.display() ga.generate_new_population() time.sleep(0.5) # Simulate delay for each generation # Main Function def main(): setup_advanced_cyberpunk_style() st.markdown('

Neural Evolution GPT-2 Training Hub

', unsafe_allow_html=True) # Hugging Face Account Login token = huggingface_login() if token is None: return # Load Model and Tokenizer model, tokenizer = initialize_model() # Prepare Data data = ["Sample training text"] * 10 # Replace with real data train_dataset = prepare_dataset(data, tokenizer) # Initialize Dashboard dashboard = TrainingDashboard() # Sidebar Configuration st.sidebar.markdown("### Training Parameters") num_generations = st.sidebar.slider("Generations", 1, 50, 10) population_size = st.sidebar.slider("Population Size", 4, 20, 10) mutation_rate = st.sidebar.slider("Mutation Rate", 0.01, 0.5, 0.1) # Initialize Genetic Algorithm ga = GeneticAlgorithm(model, tokenizer, train_dataset, population_size, mutation_rate) # Run Training if st.button("Start Training"): training_loop(dashboard, ga, num_generations) if __name__ == "__main__": main()