import streamlit as st import numpy as np import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling from datasets import Dataset import time from datetime import datetime import plotly.graph_objects as go # Advanced Cyberpunk Styling def setup_advanced_cyberpunk_style(): st.markdown(""" """, unsafe_allow_html=True) # Initialize Model and Tokenizer def initialize_model(): model = GPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") return model, tokenizer # Prepare Dataset def prepare_dataset(data, tokenizer, block_size=128): def tokenize_function(examples): return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length') raw_dataset = Dataset.from_dict({'text': data}) tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text']) tokenized_dataset = tokenized_dataset.map( lambda examples: {'labels': examples['input_ids']}, batched=True ) tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) return tokenized_dataset # Training Dashboard Class class TrainingDashboard: def __init__(self): self.metrics = { 'current_loss': 0, 'best_loss': float('inf'), 'generation': 0, 'start_time': time.time(), 'training_speed': 0 } self.history = [] def update(self, loss, generation): self.metrics['current_loss'] = loss self.metrics['generation'] = generation if loss < self.metrics['best_loss']: self.metrics['best_loss'] = loss elapsed_time = time.time() - self.metrics['start_time'] self.metrics['training_speed'] = generation / elapsed_time self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')}) def display(self): st.write(f"**Generation:** {self.metrics['generation']}") st.write(f"**Current Loss:** {self.metrics['current_loss']:.4f}") st.write(f"**Best Loss:** {self.metrics['best_loss']:.4f}") st.write(f"**Training Speed:** {self.metrics['training_speed']:.2f} generations/sec") # Display Progress Bar def display_progress(progress): st.markdown(f"""
""", unsafe_allow_html=True) # Fitness Calculation (Placeholder for actual loss computation) def compute_loss(model, dataset): # Placeholder for real loss computation with Trainer API or custom logic trainer = Trainer( model=model, args=TrainingArguments(output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1), train_dataset=dataset, data_collator=DataCollatorForLanguageModeling(tokenizer=model.config._name_or_path, mlm=False), ) train_result = trainer.train() return train_result.training_loss # Training Loop with Loading Screen def training_loop(dashboard, model, dataset, num_generations, population_size): with st.spinner("Training in progress..."): for generation in range(1, num_generations + 1): # Simulated population loop for individual in range(population_size): loss = compute_loss(model, dataset) dashboard.update(loss, generation) progress = generation / num_generations display_progress(progress) dashboard.display() time.sleep(1) # Simulate delay for each individual training # Main Function def main(): setup_advanced_cyberpunk_style() st.markdown('

Neural Evolution GPT-2 Training Hub

', unsafe_allow_html=True) # Load Model and Tokenizer model, tokenizer = initialize_model() # Prepare Data data = ["Sample training text"] * 10 # Replace with real data train_dataset = prepare_dataset(data, tokenizer) # Initialize Dashboard dashboard = TrainingDashboard() # Sidebar Configuration st.sidebar.markdown("### Training Parameters") num_generations = st.sidebar.slider("Generations", 1, 20, 5) population_size = st.sidebar.slider("Population Size", 4, 20, 6) # Run Training if st.button("Start Training"): training_loop(dashboard, model, train_dataset, num_generations, population_size) if __name__ == "__main__": main()