Neurasense / app.py
Sephfox's picture
Update app.py
06ea1ab verified
raw
history blame
26.5 kB
import streamlit as st
from pathlib import Path
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import seaborn as sns
from io import BytesIO
import base64
from streamlit_drawable_canvas import st_canvas
import io
import torch
import cv2
import mediapipe as mp
import base64
import gc
import accelerate
import numpy
# Set page config
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
# Enhanced Custom CSS for a hyper-cyberpunk realistic look
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&family=Roboto+Mono:wght@400;700&display=swap');
:root {
--neon-blue: #00FFFF;
--neon-pink: #FF00FF;
--neon-green: #39FF14;
--dark-bg: #0a0a0a;
--darker-bg: #050505;
--light-text: #E0E0E0;
}
body {
color: var(--light-text);
background-color: var(--dark-bg);
font-family: 'Roboto Mono', monospace;
overflow-x: hidden;
}
.stApp {
background:
linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%),
repeating-linear-gradient(-45deg, #111 0%, #111 1%, transparent 1%, transparent 3%);
background-blend-mode: overlay;
animation: backgroundPulse 20s infinite alternate;
}
@keyframes backgroundPulse {
0% { background-position: 0% 50%; }
100% { background-position: 100% 50%; }
}
h1, h2, h3 {
font-family: 'Orbitron', sans-serif;
position: relative;
text-shadow:
0 0 5px var(--neon-blue),
0 0 10px var(--neon-blue),
0 0 20px var(--neon-blue),
0 0 40px var(--neon-blue);
animation: textGlitch 5s infinite alternate;
}
@keyframes textGlitch {
0% { transform: skew(0deg); }
20% { transform: skew(5deg); text-shadow: 3px 3px 0 var(--neon-pink); }
40% { transform: skew(-5deg); text-shadow: -3px -3px 0 var(--neon-green); }
60% { transform: skew(3deg); text-shadow: 2px -2px 0 var(--neon-blue); }
80% { transform: skew(-3deg); text-shadow: -2px 2px 0 var(--neon-pink); }
100% { transform: skew(0deg); }
}
.stButton>button {
color: var(--neon-blue);
border: 2px solid var(--neon-blue);
border-radius: 5px;
background: linear-gradient(45deg, rgba(0,255,255,0.1), rgba(0,255,255,0.3));
box-shadow: 0 0 15px var(--neon-blue);
transition: all 0.3s ease;
text-transform: uppercase;
letter-spacing: 2px;
backdrop-filter: blur(5px);
}
.stButton>button:hover {
transform: scale(1.05) translateY(-3px);
box-shadow: 0 0 30px var(--neon-blue);
text-shadow: 0 0 5px var(--neon-blue);
}
.stTextInput>div>div>input, .stTextArea>div>div>textarea, .stSelectbox>div>div>div {
background-color: rgba(0, 255, 255, 0.1);
border: 1px solid var(--neon-blue);
border-radius: 5px;
color: var(--neon-blue);
backdrop-filter: blur(5px);
}
.stTextInput>div>div>input:focus, .stTextArea>div>div>textarea:focus, .stSelectbox>div>div>div:focus {
box-shadow: 0 0 20px var(--neon-blue);
}
.stSlider>div>div>div>div {
background-color: var(--neon-blue);
}
.stSlider>div>div>div>div>div {
background-color: var(--neon-pink);
box-shadow: 0 0 10px var(--neon-pink);
}
::-webkit-scrollbar {
width: 10px;
height: 10px;
}
::-webkit-scrollbar-track {
background: var(--darker-bg);
border-radius: 5px;
}
::-webkit-scrollbar-thumb {
background: var(--neon-blue);
border-radius: 5px;
box-shadow: 0 0 5px var(--neon-blue);
}
::-webkit-scrollbar-thumb:hover {
background: var(--neon-pink);
box-shadow: 0 0 5px var(--neon-pink);
}
.stPlot, .stDataFrame {
border: 1px solid var(--neon-blue);
border-radius: 5px;
overflow: hidden;
box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
}
.stImage, .stIcon {
filter: drop-shadow(0 0 5px var(--neon-blue));
}
.stSidebar, .stContainer {
background:
linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%);
animation: sidebarPulse 10s infinite alternate;
}
@keyframes sidebarPulse {
0% { background-position: 0% 50%; }
100% { background-position: 100% 50%; }
}
.element-container {
position: relative;
}
.element-container::before {
content: '';
position: absolute;
top: -5px;
left: -5px;
right: -5px;
bottom: -5px;
border: 1px solid var(--neon-blue);
border-radius: 10px;
opacity: 0.5;
pointer-events: none;
}
.stMarkdown a {
color: var(--neon-pink);
text-decoration: none;
position: relative;
transition: all 0.3s ease;
}
.stMarkdown a::after {
content: '';
position: absolute;
width: 100%;
height: 1px;
bottom: -2px;
left: 0;
background-color: var(--neon-pink);
transform: scaleX(0);
transform-origin: bottom right;
transition: transform 0.3s ease;
}
.stMarkdown a:hover::after {
transform: scaleX(1);
transform-origin: bottom left;
}
/* Cyberpunk-style progress bar */
.stProgress > div > div {
background-color: var(--neon-blue);
background-image: linear-gradient(
45deg,
var(--neon-pink) 25%,
transparent 25%,
transparent 50%,
var(--neon-pink) 50%,
var(--neon-pink) 75%,
transparent 75%,
transparent
);
background-size: 40px 40px;
animation: progress-bar-stripes 1s linear infinite;
}
@keyframes progress-bar-stripes {
0% { background-position: 40px 0; }
100% { background-position: 0 0; }
}
/* Glowing checkbox */
.stCheckbox > label > div {
border-color: var(--neon-blue);
transition: all 0.3s ease;
}
.stCheckbox > label > div[data-checked="true"] {
background-color: var(--neon-blue);
box-shadow: 0 0 10px var(--neon-blue);
}
/* Futuristic radio button */
.stRadio > div {
background-color: rgba(0, 255, 255, 0.1);
border-radius: 10px;
padding: 10px;
}
.stRadio > div > label > div {
border-color: var(--neon-blue);
transition: all 0.3s ease;
}
.stRadio > div > label > div[data-checked="true"] {
background-color: var(--neon-blue);
box-shadow: 0 0 10px var(--neon-blue);
}
/* Cyberpunk-style tables */
.stDataFrame table {
border-collapse: separate;
border-spacing: 0;
border: 1px solid var(--neon-blue);
border-radius: 10px;
overflow: hidden;
}
.stDataFrame th {
background-color: rgba(0, 255, 255, 0.2);
color: var(--neon-blue);
text-transform: uppercase;
letter-spacing: 1px;
}
.stDataFrame td {
border-bottom: 1px solid rgba(0, 255, 255, 0.2);
}
.stDataFrame tr:last-child td {
border-bottom: none;
}
/* Futuristic file uploader */
.stFileUploader > div {
border: 2px dashed var(--neon-blue);
border-radius: 10px;
background-color: rgba(0, 255, 255, 0.05);
transition: all 0.3s ease;
}
.stFileUploader > div:hover {
background-color: rgba(0, 255, 255, 0.1);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
}
/* Cyberpunk-style tooltips */
.stTooltipIcon {
color: var(--neon-pink);
transition: all 0.3s ease;
}
.stTooltipIcon:hover {
color: var(--neon-blue);
text-shadow: 0 0 5px var(--neon-blue);
}
/* Futuristic date input */
.stDateInput > div > div > input {
background-color: rgba(0, 255, 255, 0.1);
border: 1px solid var(--neon-blue);
border-radius: 5px;
color: var(--neon-blue);
backdrop-filter: blur(5px);
}
.stDateInput > div > div > input:focus {
box-shadow: 0 0 20px var(--neon-blue);
}
/* Cyberpunk-style code blocks */
.stCodeBlock {
background-color: rgba(0, 0, 0, 0.6);
border: 1px solid var(--neon-green);
border-radius: 5px;
color: var(--neon-green);
font-family: 'Roboto Mono', monospace;
padding: 10px;
position: relative;
overflow: hidden;
}
.stCodeBlock::before {
content: '';
position: absolute;
top: -10px;
left: -10px;
right: -10px;
bottom: -10px;
background: linear-gradient(45deg, var(--neon-green), transparent);
opacity: 0.1;
z-index: -1;
}
</style>
"""
# Apply the custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
AVATAR_WIDTH = 600
AVATAR_HEIGHT = 800
# Your Streamlit app code goes here
st.title("NeuraSense AI")
# Set up DialoGPT model
@st.cache_resource
def load_tokenizer():
return AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
@st.cache_resource
def load_model():
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium",
device_map="auto",
torch_dtype=torch.float16)
return model
tokenizer = load_tokenizer()
model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Set up MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.7)
# Humanoid Detection Function
def detect_humanoid(image_path):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image_rgb)
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
image_height, image_width, _ = image.shape
keypoints = [(int(landmark.x * image_width), int(landmark.y * image_height)) for landmark in landmarks]
return keypoints
return []
# Apply touch points on detected humanoid keypoints
def apply_touch_points(image_path, keypoints):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(image_rgb)
draw = ImageDraw.Draw(image_pil)
for point in keypoints:
draw.ellipse([point[0] - 5, point[1] - 5, point[0] + 5, point[1] + 5], fill='red')
return image_pil
# Create Sensation Map with Vectorized Computation for Speed
def create_sensation_map(width, height, keypoints):
sensation_map = np.random.rand(height, width, 12) * 0.5 + 0.5
# Create coordinate grids for vectorized calculation
x_grid, y_grid = np.meshgrid(np.arange(width), np.arange(height))
for kp in keypoints:
kp_x, kp_y = kp
# Using vectorized distance calculation
dist = np.sqrt((x_grid - kp_x) ** 2 + (y_grid - kp_y) ** 2)
# Apply Gaussian influence on sensation based on distance
influence = np.exp(-dist / 100) # Smoother, larger area of influence
sensation_map[:, :, :12] *= 1 + (influence[..., np.newaxis]) * 1.2 # Apply to all sensation channels
return sensation_map
# Create Heatmap for a Specific Sensation Type
def create_heatmap(sensation_map, sensation_type):
plt.figure(figsize=(10, 15))
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
plt.title(f'{["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"][sensation_type]} Sensation Map')
plt.axis('off')
# Save the heatmap to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Create an image from the buffer
heatmap_img = Image.open(buf)
return heatmap_img
# Generate AI response based on keypoints and sensation map
def generate_ai_response(keypoints, sensation_map):
num_keypoints = len(keypoints)
avg_sensations = np.mean(sensation_map, axis=(0, 1))
response = f"I detect {num_keypoints} key points on the humanoid figure. "
response += "The average sensations across the body are:\n"
for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
"Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]):
response += f"{sensation}: {avg_sensations[i]:.2f}\n"
return response
# Streamlit UI for Interaction
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Read and save uploaded image
image_path = 'temp.jpg'
with open(image_path, 'wb') as f:
f.write(uploaded_file.getvalue())
# Detect humanoid keypoints
keypoints = detect_humanoid(image_path)
# Apply touch points to the image
processed_image = apply_touch_points(image_path, keypoints)
# Create sensation map
image = cv2.imread(image_path)
image_height, image_width, _ = image.shape
sensation_map = create_sensation_map(image_width, image_height, keypoints)
# Display the processed image with touch points
fig, ax = plt.subplots()
ax.imshow(processed_image)
# List of clicked points for interaction
clicked_points = []
def onclick(event):
if event.xdata is not None and event.ydata is not None:
clicked_points.append((int(event.xdata), int(event.ydata)))
st.write(f"Clicked point: ({int(event.xdata)}, {int(event.ydata)})")
# Update sensation values based on the clicked point
sensation = sensation_map[int(event.ydata), int(event.xdata)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({int(event.xdata):.1f}, {int(event.ydata):.1f})")
st.write(f"Pain: {pain:.2f} | Pleasure: {pleasure:.2f} | Pressure: {pressure_sens:.2f}")
st.write(f"Temperature: {temp_sens:.2f} | Texture: {texture_sens:.2f} | EM Field: {em_sens:.2f}")
st.write(f"Tickle: {tickle_sens:.2f} | Itch: {itch_sens:.2f} | Quantum: {quantum_sens:.2f}")
st.write(f"Neural: {neural_sens:.2f} | Proprioception: {proprioception_sens:.2f} | Synesthesia: {synesthesia_sens:.2f}")
fig.canvas.mpl_connect('button_press_event', onclick)
# Display the plot
st.pyplot(fig)
# Heatmap for different sensations
sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
"Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]
selected_sensation = st.selectbox("Select a sensation to view:", sensation_types)
heatmap = create_heatmap(sensation_map, sensation_types.index(selected_sensation))
st.image(heatmap, use_column_width=True)
# Generate AI response based on the image and sensations
if st.button("Generate AI Response"):
response = generate_ai_response(keypoints, sensation_map)
st.write("AI Response:", response)
# Additional Neural Interface Controls for Interaction
st.subheader("Neural Interface Controls")
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
show_heatmap = st.checkbox("Show Sensation Heatmap", value=True)
if st.button("Simulate Interaction"):
if clicked_points:
touch_x, touch_y = clicked_points[-1]
# Retrieve the sensation values at the clicked location
sensation = sensation_map[touch_y, touch_x]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
# Adjust the sensations based on user interaction settings
measured_pressure = pressure_sens * touch_pressure
measured_temp = temp_sens # Assuming temperature doesn't change during touch
measured_texture = texture_sens # Assuming texture is constant
measured_em = em_sens # Assuming electromagnetic field remains constant
# Quantum sensation handling based on user selection
if use_quantum:
quantum_state = quantum_sens
else:
quantum_state = "N/A"
# Calculate overall sensations with interaction modifiers
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - image_width / 2, touch_y - image_height / 2]) / (image_width / 2)
# Synesthesia (mixing of senses) handling based on user selection
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Display simulated interaction results
st.write("### Simulated Interaction Results")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
st.write(f"Pain: {pain_level:.2f} | Pleasure: {pleasure_level:.2f} | Pressure: {measured_pressure:.2f}")
st.write(f"Temperature: {measured_temp:.2f} | Texture: {measured_texture:.2f} | EM Field: {measured_em:.2f}")
st.write(f"Tickle: {tickle_level:.2f} | Itch: {itch_level:.2f} | Quantum: {quantum_state}")
st.write(f"Neural: {neural_sens:.2f} | Proprioception: {proprioception:.2f} | Synesthesia: {synesthesia}")
# Optionally display heatmap of the sensations
if show_heatmap:
heatmap = create_heatmap(sensation_map, sensation_types.index("Pain")) # Example for "Pain"
st.image(heatmap, use_column_width=True)
# Optionally, calculate and display the average pressure value in the image
average_pressure = np.mean(sensation_map[:, :, 2]) # Pressure channel
st.write(f"Average Pressure across the image: {average_pressure:.2f}")
# Create a futuristic data display
data_display = (
"```\n"
"+---------------------------------------------+\n"
f"| Pressure : {average_pressure:.2f}".ljust(45) + "|\n"
f"| Temperature : {np.mean(sensation_map[:, :, 3]):.2f}°C".ljust(45) + "|\n"
f"| Texture : {np.mean(sensation_map[:, :, 4]):.2f}".ljust(45) + "|\n"
f"| EM Field : {np.mean(sensation_map[:, :, 5]):.2f} μT".ljust(45) + "|\n"
f"| Quantum State: {np.mean(sensation_map[:, :, 8]):.2f}".ljust(45) + "|\n"
"+---------------------------------------------+\n"
f"| Location: ({touch_x:.1f}, {touch_y:.1f})".ljust(45) + "|\n"
f"| Pain Level : {np.mean(sensation_map[:, :, 0]):.2f}".ljust(45) + "|\n"
f"| Pleasure : {np.mean(sensation_map[:, :, 1]):.2f}".ljust(45) + "|\n"
f"| Tickle : {np.mean(sensation_map[:, :, 6]):.2f}".ljust(45) + "|\n"
f"| Itch : {np.mean(sensation_map[:, :, 7]):.2f}".ljust(45) + "|\n"
f"| Proprioception: {np.mean(sensation_map[:, :, 10]):.2f}".ljust(44) + "|\n"
f"| Synesthesia : {np.mean(sensation_map[:, :, 11]):.2f}".ljust(45) + "|\n"
f"| Neural Response: {np.mean(sensation_map[:, :, 9]):.2f}".ljust(43) + "|\n"
"+---------------------------------------------+\n"
"```"
)
st.code(data_display, language="")
# Generate description
prompt = (
"Human: Analyze the sensory input for a hyper-advanced AI humanoid:\n"
" Location: (" + str(round(touch_x, 1)) + ", " + str(round(touch_y, 1)) + ")\n"
" Duration: " + str(round(touch_duration, 1)) + "s, Intensity: " + str(round(touch_pressure, 2)) + "\n"
" Pressure: " + str(round(measured_pressure, 2)) + "\n"
" Temperature: " + str(round(measured_temp, 2)) + "°C\n"
" Texture: " + measured_texture + "\n"
" EM Field: " + str(round(measured_em, 2)) + " μT\n"
" Quantum State: " + str(quantum_state) + "\n"
" Resulting in:\n"
" Pain: " + str(round(pain_level, 2)) + ", Pleasure: " + str(round(pleasure_level, 2)) + "\n"
" Tickle: " + str(round(tickle_level, 2)) + ", Itch: " + str(round(itch_level, 2)) + "\n"
" Proprioception: " + str(round(proprioception, 2)) + "\n"
" Synesthesia: " + synesthesia + "\n"
" Neural Response: " + str(round(neural_response, 2)) + "\n"
" Provide a detailed, scientific analysis of the AI's experience.\n"
" AI:"
)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=400,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
st.write("### AI's Sensory Analysis:")
st.write(response)
# Constants
AVATAR_WIDTH = 50 # Reduced size
AVATAR_HEIGHT = 75 # Reduced size
# Function to generate sensation data on-the-fly
def generate_sensation_data(i, j):
return np.random.rand()
# Simplified sensation map
st.subheader("Neuro-Sensory Map")
titles = [
'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
'Tickle', 'Itch', 'Proprioception', 'Synesthesia'
]
# Generate and display maps one at a time
for title in titles:
fig, ax = plt.subplots(figsize=(5, 5))
sensation_map = np.array([[generate_sensation_data(i, j) for j in range(AVATAR_WIDTH)] for i in range(AVATAR_HEIGHT)])
im = ax.imshow(sensation_map, cmap='plasma')
ax.set_title(title)
fig.colorbar(im, ax=ax)
st.pyplot(fig)
plt.close(fig) # Close the figure to free up memory
st.write("The neuro-sensory maps illustrate the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
# Add information about the AI's capabilities
st.subheader("NeuraSense AI: Advanced Sensory Capabilities")
capabilities = [
"1. High-Precision Pressure Sensors",
"2. Advanced Thermal Detectors",
"3. Adaptive Texture Analysis",
"4. Neural Network Integration",
"5. Proprioception Simulation",
"6. Synesthesia Emulation",
"7. Tickle and Itch Simulation",
"8. Adaptive Pain and Pleasure Modeling"
]
for capability in capabilities:
st.write(capability)
# Interactive sensory exploration
st.subheader("Interactive Sensory Exploration")
exploration_type = st.selectbox("Choose a sensory exploration:",
["Synesthesia Experience", "Proprioceptive Mapping"])
if exploration_type == "Synesthesia Experience":
st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
elif exploration_type == "Proprioceptive Mapping":
st.write("Explore the AI's sense of body position and movement.")
proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
buf = io.BytesIO()
plt.figure(figsize=(5, 5))
plt.imshow(proprioceptive_map, cmap='coolwarm')
plt.savefig(buf, format='png')
plt.close() # Close the figure to free up memory
proprioceptive_image = Image.open(buf)
st.image(proprioceptive_image, use_column_width=True)
# Footer
st.write("---")
st.write("NeuraSense AI: Advanced Sensory Simulation v4.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")