Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,39 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
-
from typing import List, Tuple
|
4 |
-
from transformers import pipeline
|
5 |
import matplotlib.pyplot as plt
|
6 |
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
7 |
from streamlit_drawable_canvas import st_canvas
|
8 |
import time
|
9 |
from PIL import Image
|
10 |
import io
|
|
|
11 |
|
12 |
# Constants
|
13 |
-
WIDTH, HEIGHT =
|
14 |
-
|
15 |
-
DAMPING = 0.7
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def create_sensation_map(width, height):
|
19 |
sensation_map = np.zeros((height, width, 3)) # RGB channels for pain, pleasure, and neutral
|
20 |
for y in range(height):
|
21 |
for x in range(width):
|
22 |
# Base sensation
|
23 |
-
base = np.sin(x/
|
24 |
|
25 |
# Pain regions (red channel)
|
26 |
-
pain = np.exp(-((x-
|
27 |
|
28 |
# Pleasure regions (green channel)
|
29 |
-
pleasure = np.exp(-((x-
|
30 |
|
31 |
# Neutral sensation (blue channel)
|
32 |
neutral = 1 - (pain + pleasure)
|
@@ -35,51 +42,66 @@ def create_sensation_map(width, height):
|
|
35 |
|
36 |
return sensation_map
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
# Set up the Hugging Face pipeline
|
41 |
-
@st.cache_resource
|
42 |
-
def load_model():
|
43 |
-
return pipeline('text-generation', model='gpt2')
|
44 |
-
|
45 |
-
text_generator = load_model()
|
46 |
|
47 |
# Streamlit app
|
48 |
-
st.title("Advanced
|
49 |
-
|
50 |
-
# Create
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def calculate_sensation(x, y, pressure, duration):
|
54 |
-
|
55 |
-
sensation = sensation_map[int(y), int(x)]
|
56 |
-
|
57 |
-
# Modify sensation based on pressure and duration
|
58 |
modified_sensation = sensation * pressure * (1 + np.log(duration + 1))
|
59 |
-
|
60 |
return modified_sensation
|
61 |
|
62 |
-
def
|
63 |
-
|
64 |
-
pain = sensation[0]
|
65 |
-
pleasure = sensation[1]
|
66 |
-
neutral = sensation[2]
|
67 |
-
|
68 |
-
# Generate a description of the touch
|
69 |
-
st.write(f"Touch at ({x:.2f}, {y:.2f}) with pressure {pressure:.2f} for {duration:.2f} seconds")
|
70 |
-
st.write(f"Pain: {pain:.2f}, Pleasure: {pleasure:.2f}, Neutral: {neutral:.2f}")
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
dominant = "pain"
|
75 |
-
elif pleasure > pain and pleasure > neutral:
|
76 |
-
dominant = "pleasure"
|
77 |
-
else:
|
78 |
-
dominant = "neutral"
|
79 |
|
80 |
-
|
81 |
-
text = text_generator(prompt, max_length=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, num_beams=1)[0]['generated_text']
|
82 |
-
st.write(text)
|
83 |
|
84 |
# Initialize session state
|
85 |
if 'touch_start_time' not in st.session_state:
|
@@ -87,34 +109,6 @@ if 'touch_start_time' not in st.session_state:
|
|
87 |
if 'last_touch_position' not in st.session_state:
|
88 |
st.session_state.last_touch_position = None
|
89 |
|
90 |
-
# Main app logic
|
91 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
92 |
-
ax.imshow(sensation_map)
|
93 |
-
ax.axis('off')
|
94 |
-
|
95 |
-
# Convert matplotlib figure to Image
|
96 |
-
canvas = FigureCanvasAgg(fig)
|
97 |
-
canvas.draw()
|
98 |
-
buf = io.BytesIO()
|
99 |
-
plt.savefig(buf, format='png')
|
100 |
-
buf.seek(0)
|
101 |
-
img = Image.open(buf)
|
102 |
-
|
103 |
-
# Use streamlit-drawable-canvas for interaction
|
104 |
-
canvas_result = st_canvas(
|
105 |
-
fill_color="rgba(255, 165, 0, 0.3)",
|
106 |
-
stroke_width=3,
|
107 |
-
stroke_color="#e00",
|
108 |
-
background_color="#eee",
|
109 |
-
background_image=img,
|
110 |
-
update_streamlit=True,
|
111 |
-
height=HEIGHT,
|
112 |
-
width=WIDTH,
|
113 |
-
drawing_mode="point",
|
114 |
-
point_display_radius=0,
|
115 |
-
key="canvas",
|
116 |
-
)
|
117 |
-
|
118 |
# Handle touch events
|
119 |
if canvas_result.json_data is not None:
|
120 |
objects = canvas_result.json_data["objects"]
|
@@ -136,12 +130,21 @@ if canvas_result.json_data is not None:
|
|
136 |
pressure = 1.0
|
137 |
|
138 |
duration = time.time() - st.session_state.touch_start_time
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
st.session_state.last_touch_position = current_position
|
142 |
else:
|
143 |
st.session_state.touch_start_time = None
|
144 |
st.session_state.last_touch_position = None
|
145 |
|
146 |
-
st.write("Click and drag on the
|
147 |
-
st.write("
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
|
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
5 |
from streamlit_drawable_canvas import st_canvas
|
6 |
import time
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
|
11 |
# Constants
|
12 |
+
WIDTH, HEIGHT = 800, 400
|
13 |
+
AVATAR_WIDTH, AVATAR_HEIGHT = 300, 400
|
|
|
14 |
|
15 |
+
# Set up DialoGPT model
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
20 |
+
return tokenizer, model
|
21 |
+
|
22 |
+
tokenizer, model = load_model()
|
23 |
+
|
24 |
+
# Create sensation map for the avatar
|
25 |
def create_sensation_map(width, height):
|
26 |
sensation_map = np.zeros((height, width, 3)) # RGB channels for pain, pleasure, and neutral
|
27 |
for y in range(height):
|
28 |
for x in range(width):
|
29 |
# Base sensation
|
30 |
+
base = np.sin(x/15) * np.cos(y/15) * 0.5 + np.random.normal(0, 0.1)
|
31 |
|
32 |
# Pain regions (red channel)
|
33 |
+
pain = np.exp(-((x-75)**2 + (y-100)**2) / 2000) + np.exp(-((x-225)**2 + (y-300)**2) / 2000)
|
34 |
|
35 |
# Pleasure regions (green channel)
|
36 |
+
pleasure = np.exp(-((x-150)**2 + (y-200)**2) / 2000) + np.exp(-((x-75)**2 + (y-300)**2) / 2000)
|
37 |
|
38 |
# Neutral sensation (blue channel)
|
39 |
neutral = 1 - (pain + pleasure)
|
|
|
42 |
|
43 |
return sensation_map
|
44 |
|
45 |
+
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Streamlit app
|
48 |
+
st.title("Advanced Humanoid Touch Simulation")
|
49 |
+
|
50 |
+
# Create two columns
|
51 |
+
col1, col2 = st.columns(2)
|
52 |
+
|
53 |
+
# Avatar column
|
54 |
+
with col1:
|
55 |
+
st.subheader("Humanoid Avatar")
|
56 |
+
avatar_fig, avatar_ax = plt.subplots(figsize=(4, 6))
|
57 |
+
avatar_ax.imshow(avatar_sensation_map)
|
58 |
+
avatar_ax.axis('off')
|
59 |
+
st.pyplot(avatar_fig)
|
60 |
+
|
61 |
+
# Touch interface column
|
62 |
+
with col2:
|
63 |
+
st.subheader("Touch Interface")
|
64 |
+
touch_fig, touch_ax = plt.subplots(figsize=(4, 6))
|
65 |
+
touch_ax.add_patch(plt.Rectangle((0, 0), AVATAR_WIDTH, AVATAR_HEIGHT, fill=False))
|
66 |
+
touch_ax.set_xlim(0, AVATAR_WIDTH)
|
67 |
+
touch_ax.set_ylim(0, AVATAR_HEIGHT)
|
68 |
+
touch_ax.axis('off')
|
69 |
+
|
70 |
+
# Convert matplotlib figure to Image
|
71 |
+
canvas = FigureCanvasAgg(touch_fig)
|
72 |
+
canvas.draw()
|
73 |
+
buf = io.BytesIO()
|
74 |
+
plt.savefig(buf, format='png')
|
75 |
+
buf.seek(0)
|
76 |
+
img = Image.open(buf)
|
77 |
+
|
78 |
+
# Use streamlit-drawable-canvas for interaction
|
79 |
+
canvas_result = st_canvas(
|
80 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
81 |
+
stroke_width=3,
|
82 |
+
stroke_color="#e00",
|
83 |
+
background_color="#eee",
|
84 |
+
background_image=img,
|
85 |
+
update_streamlit=True,
|
86 |
+
height=AVATAR_HEIGHT,
|
87 |
+
width=AVATAR_WIDTH,
|
88 |
+
drawing_mode="point",
|
89 |
+
point_display_radius=5,
|
90 |
+
key="canvas",
|
91 |
+
)
|
92 |
|
93 |
def calculate_sensation(x, y, pressure, duration):
|
94 |
+
sensation = avatar_sensation_map[int(y), int(x)]
|
|
|
|
|
|
|
95 |
modified_sensation = sensation * pressure * (1 + np.log(duration + 1))
|
|
|
96 |
return modified_sensation
|
97 |
|
98 |
+
def generate_description(x, y, pressure, duration, pain, pleasure, neutral):
|
99 |
+
prompt = f"Human: Describe the sensation when touched at ({x:.1f}, {y:.1f}) with pressure {pressure:.2f} for {duration:.2f} seconds. Pain: {pain:.2f}, Pleasure: {pleasure:.2f}, Neutral: {neutral:.2f}.\nAvatar:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
102 |
+
output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
return tokenizer.decode(output[0], skip_special_tokens=True).split("Avatar: ")[-1].strip()
|
|
|
|
|
105 |
|
106 |
# Initialize session state
|
107 |
if 'touch_start_time' not in st.session_state:
|
|
|
109 |
if 'last_touch_position' not in st.session_state:
|
110 |
st.session_state.last_touch_position = None
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# Handle touch events
|
113 |
if canvas_result.json_data is not None:
|
114 |
objects = canvas_result.json_data["objects"]
|
|
|
130 |
pressure = 1.0
|
131 |
|
132 |
duration = time.time() - st.session_state.touch_start_time
|
133 |
+
x, y = current_position
|
134 |
+
sensation = calculate_sensation(x, y, pressure, duration)
|
135 |
+
pain, pleasure, neutral = sensation
|
136 |
+
|
137 |
+
description = generate_description(x, y, pressure, duration, pain, pleasure, neutral)
|
138 |
+
|
139 |
+
st.write(f"Touch at ({x:.1f}, {y:.1f}) with pressure {pressure:.2f} for {duration:.2f} seconds")
|
140 |
+
st.write(f"Pain: {pain:.2f}, Pleasure: {pleasure:.2f}, Neutral: {neutral:.2f}")
|
141 |
+
st.write("Avatar's response:")
|
142 |
+
st.write(description)
|
143 |
|
144 |
st.session_state.last_touch_position = current_position
|
145 |
else:
|
146 |
st.session_state.touch_start_time = None
|
147 |
st.session_state.last_touch_position = None
|
148 |
|
149 |
+
st.write("Click and drag on the touch interface to simulate touching the avatar.")
|
150 |
+
st.write("The avatar's sensation map shows pain (red), pleasure (green), and neutral (blue) areas.")
|