Sephfox commited on
Commit
db61d73
·
verified ·
1 Parent(s): 1e5b48a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -40
app.py CHANGED
@@ -843,74 +843,79 @@ st.write(response)
843
 
844
 
845
 
 
 
 
 
 
 
846
  # Constants
847
- AVATAR_WIDTH = 100
848
- AVATAR_HEIGHT = 150
 
 
 
 
849
 
850
  # Simplified sensation map
851
  st.subheader("Neuro-Sensory Map")
852
- fig, axs = plt.subplots(3, 3, figsize=(15, 15))
853
  titles = [
854
  'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
855
  'Tickle', 'Itch', 'Proprioception', 'Synesthesia'
856
  ]
857
 
858
- avatar_sensation_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, len(titles))
859
-
860
- for i, title in enumerate(titles):
861
- ax = axs[i // 3, i % 3]
862
- im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
863
- ax.set_title(title)
864
- fig.colorbar(im, ax=ax)
 
 
865
 
866
- plt.tight_layout()
867
- st.pyplot(fig)
868
-
869
- st.write("The neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
870
 
871
  # Add information about the AI's capabilities
872
  st.subheader("NeuraSense AI: Advanced Sensory Capabilities")
873
 
874
- st.write("This advanced AI humanoid incorporates sophisticated sensory technology:")
875
-
876
  capabilities = [
877
- "1. High-Precision Pressure Sensors: Provide exceptional sensitivity to touch and pressure.",
878
- "2. Advanced Thermal Detectors: Capable of detecting fine temperature variations.",
879
- "3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.",
880
- "4. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.",
881
- "5. Proprioception Simulation: Accurately models the AI's sense of body position and movement.",
882
- "6. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.",
883
- "7. Tickle and Itch Simulation: Replicates these unique sensations with high precision.",
884
- "8. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli."
885
  ]
886
 
887
  for capability in capabilities:
888
  st.write(capability)
889
 
890
- st.write("The AI's responses are generated using an advanced language model, providing detailed analysis of its sensory experiences.")
891
-
892
  # Interactive sensory exploration
893
  st.subheader("Interactive Sensory Exploration")
894
  exploration_type = st.selectbox("Choose a sensory exploration:",
895
  ["Synesthesia Experience", "Proprioceptive Mapping"])
896
 
897
  if exploration_type == "Synesthesia Experience":
898
- st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
899
- synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
900
- st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
901
 
902
  elif exploration_type == "Proprioceptive Mapping":
903
- st.write("Explore the AI's sense of body position and movement.")
904
- proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
905
- for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
906
-
907
- buf = io.BytesIO()
908
- plt.figure(figsize=(8, 6))
909
- plt.imshow(proprioceptive_map, cmap='coolwarm')
910
- plt.savefig(buf, format='png')
911
-
912
- proprioceptive_image = Image.open(buf)
913
- st.image(proprioceptive_image, use_column_width=True)
 
914
 
915
  # Footer
916
  st.write("---")
 
843
 
844
 
845
 
846
+ import streamlit as st
847
+ import matplotlib.pyplot as plt
848
+ import numpy as np
849
+ from PIL import Image
850
+ import io
851
+
852
  # Constants
853
+ AVATAR_WIDTH = 50 # Reduced size
854
+ AVATAR_HEIGHT = 75 # Reduced size
855
+
856
+ # Function to generate sensation data on-the-fly
857
+ def generate_sensation_data(i, j):
858
+ return np.random.rand()
859
 
860
  # Simplified sensation map
861
  st.subheader("Neuro-Sensory Map")
 
862
  titles = [
863
  'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
864
  'Tickle', 'Itch', 'Proprioception', 'Synesthesia'
865
  ]
866
 
867
+ # Generate and display maps one at a time
868
+ for title in titles:
869
+ fig, ax = plt.subplots(figsize=(5, 5))
870
+ sensation_map = np.array([[generate_sensation_data(i, j) for j in range(AVATAR_WIDTH)] for i in range(AVATAR_HEIGHT)])
871
+ im = ax.imshow(sensation_map, cmap='plasma')
872
+ ax.set_title(title)
873
+ fig.colorbar(im, ax=ax)
874
+ st.pyplot(fig)
875
+ plt.close(fig) # Close the figure to free up memory
876
 
877
+ st.write("The neuro-sensory maps illustrate the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
 
 
 
878
 
879
  # Add information about the AI's capabilities
880
  st.subheader("NeuraSense AI: Advanced Sensory Capabilities")
881
 
 
 
882
  capabilities = [
883
+ "1. High-Precision Pressure Sensors",
884
+ "2. Advanced Thermal Detectors",
885
+ "3. Adaptive Texture Analysis",
886
+ "4. Neural Network Integration",
887
+ "5. Proprioception Simulation",
888
+ "6. Synesthesia Emulation",
889
+ "7. Tickle and Itch Simulation",
890
+ "8. Adaptive Pain and Pleasure Modeling"
891
  ]
892
 
893
  for capability in capabilities:
894
  st.write(capability)
895
 
 
 
896
  # Interactive sensory exploration
897
  st.subheader("Interactive Sensory Exploration")
898
  exploration_type = st.selectbox("Choose a sensory exploration:",
899
  ["Synesthesia Experience", "Proprioceptive Mapping"])
900
 
901
  if exploration_type == "Synesthesia Experience":
902
+ st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
903
+ synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
904
+ st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
905
 
906
  elif exploration_type == "Proprioceptive Mapping":
907
+ st.write("Explore the AI's sense of body position and movement.")
908
+ proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
909
+ for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
910
+
911
+ buf = io.BytesIO()
912
+ plt.figure(figsize=(5, 5))
913
+ plt.imshow(proprioceptive_map, cmap='coolwarm')
914
+ plt.savefig(buf, format='png')
915
+ plt.close() # Close the figure to free up memory
916
+
917
+ proprioceptive_image = Image.open(buf)
918
+ st.image(proprioceptive_image, use_column_width=True)
919
 
920
  # Footer
921
  st.write("---")